I have been working on classifying Bol loops of small order. Here I have listed some names of loops as they appear in other sources, and identify each according to the name given in my listing.
Here I reproduce all groups of order at most 32, numbered according to [TW].
n | Group Name in [TW] | Notation in [TW] | Name in my listing |
---|---|---|---|
1 | 1/1 | C1 (cyclic) | C1 |
2 | 2/1 | C2 (cyclic) | C2 |
3 | 3/1 | C3 (cyclic) | C3 |
4 | 4/1 | C4 (cyclic) | C4 |
4 | 4/2 | C22 (elementary abelian) | C22 |
5 | 5/1 | C5 (cyclic) | C5 |
6 | 6/1 | C6 (cyclic) | C6 |
6 | 6/2 | D3 (dihedral) | D3 |
7 | 7/1 | C7 (cyclic) | C7 |
8 | 8/1 | C8 (cyclic) | 8.1.8.0 |
8 | 8/2 | C2 × C4 | 8.3.8.0 |
8 | 8/3 | C23 (elementary abelian) | 8.7.8.0 |
8 | 8/4 | D4 (dihedral) | 8.5.2.0 |
8 | 8/5 | Q8 (quaternion) | 8.1.2.0 |
9 | 9/1 | C9 (cyclic) | C9 |
9 | 9/2 | C32 (elementary abelian) | C32 |
10 | 10/1 | C10 (cyclic) | C10 |
10 | 10/2 | D5 (dihedral) | D5 |
11 | 11/1 | C11 (cyclic) | C11 |
12 | 12/1 | C12 (cyclic) | 12.1.12.0 |
12 | 12/2 | C2 × C6 | 12.3.12.0 |
12 | 12/3 | D6 (dihedral) | 12.7.2.0 |
12 | 12/4 | A4 (alternating) | 12.3.1.0 |
12 | 12/5 | Q6 (dicyclic) | 12.1.2.0 |
13 | 13/1 | C13 (cyclic) | C13 |
14 | 14/1 | C14 (cyclic) | C14 |
14 | 14/2 | D7 (dihedral) | D7 |
15 | 15/1 | C15 (cyclic) | 15.2.15.0 |
16 | 16/1 | C16 (cyclic) | 16.1.16.0 |
16 | 16/2 | C2 × C8 | 16.3.16.0 |
16 | 16/3 | C42 (homocyclic) | 16.3.16.1 |
16 | 16/4 | C22 × C4 | 16.7.16.0 |
16 | 16/5 | C24 (elementary abelian) | 16.15.16.0 |
16 | 16/6 | D4 × C2 = Γ2a1 | 16.11.4.6 |
16 | 16/7 | Q × C2 = Γ2a2 | 16.3.4.21 |
16 | 16/8 | Γ2b | 16.7.4.74 |
16 | 16/9 | Γ2c1 | 16.7.4.21 |
16 | 16/10 | Γ2c2 | 16.3.4.22 |
16 | 16/11 | Γ2d | 16.3.4.23 |
16 | 16/12 | D8 (dihedral) = Γ3a1 | 16.9.2.8 |
16 | 16/13 | Γ3a2 | 16.5.2.17 |
16 | 16/14 | Q8 (dicyclic) = Γ3a3 | 16.1.2.8 |
17 | 17/1 | C17 (cyclic) | C17 |
18 | 18/1 | C18 (cyclic) | 18.1.18.0 |
18 | 18/2 | C3 × C6 | 18.1.18.1 |
18 | 18/3 | S3 × C3 | 18.3.3.1 |
18 | 18/4 | D9 (dihedral) | 18.9.1.1 |
18 | 18/5 | C32 : C2 | 18.9.1.0 |
19 | 19/1 | C19 (cyclic) | C19 |
20 | 20/1 | C20 (cyclic) | 20.1.20.0 |
20 | 20/2 | C2 × C10 | 20.3.20.0 |
20 | 20/3 | D10 (dihedral) | 20.11.2.0 |
20 | 20/4 | Q10 (dicyclic) | 20.1.2.0 |
20 | 20/5 | Hol(C5) | 20.5.1.0 |
21 | 21/1 | C21 (cyclic) | 21.2.21.0 |
21 | 21/2 | C7 : C3 | 21.14.1.2 |
22 | 22/1 | C22 (cyclic) | C22 |
22 | 22/2 | D11 (dihedral) | D11 |
23 | 23/1 | C23 (cyclic) | C23 |
24 | 24/1 | C24 (cyclic) | 24.1.24.0 |
24 | 24/2 | C2 × C12 | 24.3.24.0 |
24 | 24/3 | C22 × C6 | 24.7.24.0 |
24 | 24/4 | C2 × D6 | 24.15.4.0 |
24 | 24/5 | C2 × A4 | 24.7.2.8 |
24 | 24/6 | C2 × Q6 | 24.3.4.0 |
24 | 24/7 | C3 × D4 | 24.5.6.0 |
24 | 24/8 | C3 × Q8 | 24.1.6.0 |
24 | 24/9 | C4 × S3 | 24.7.4.0 |
24 | 24/10 | D12 (dihedral) | 24.13.2.4 |
24 | 24/11 | Q12 (dicyclic) | 24.1.2.5 |
24 | 24/12 | S4 (symmetric) | 24.9.1.1 |
24 | 24/13 | SL2(3) | 24.1.2.7 |
24 | 24/14 | C3 : C8 (semidirect) | 24.1.4.2 |
24 | 24/15 | C3 : D4 (semidirect) | 24.9.2.3 |
25 | 25/1 | C25 (cyclic) | C25 |
25 | 25/2 | C52 (elementary abelian) | C52 |
26 | 26/1 | C26 (cyclic) | C26 |
26 | 26/2 | D13 (dihedral) | D13 |
27 | 27/1 | C27 (cyclic) | 27.2.27.0 |
27 | 27/2 | C3 × C9 | 27.8.27.0 |
27 | 27/3 | C33 (elementary abelian) | 27.26.27.0 |
27 | 27/4 | 3−1+2 | 27.26.3.0 |
27 | 27/5 | 3+1+2 | 27.8.3.2 |
28 | 28/1 | C28 (cyclic) | 28.1.28.0 |
28 | 28/2 | C2 × C14 | 28.3.28.0 |
28 | 28/3 | D14 (dihedral) | 28.15.2.0 |
28 | 28/4 | Q14 (dicyclic) | 28.1.2.0 |
29 | 29/1 | C29 (cyclic) | C29 |
30 | 30/1 | C30 (cyclic) | 30.1.30.0 |
30 | 30/2 | C3 × D5 | 30.5.3.0 |
30 | 30/3 | C5 × D3 | 30.3.5.0 |
30 | 30/4 | D15 (dihedral) | 30.15.1.0 |
31 | 31/1 | C31 (cyclic) | C31 |
32 | 32/1 | C32 (cyclic) | C32 |
32 | 32/2 | C2 × C16 | C2 × C16 |
32 | 32/3 | C4 × C8 | C4 × C8 |
32 | 32/4 | C2 × C2 × C8 | C2 × C2 × C8 |
32 | 32/5 | C2 × C4 × C4 | C2 × C4 × C4 |
32 | 32/6 | C2 × C2 × C2 × C4 | C2 × C2 × C2 × C4 |
32 | 32/7 | C25 (elementary abelian) | C25 |
32 | 32/8 | D4 × C2 × C2, Γ2a1 | D4 × C2 × C2 |
32 | 32/9 | Q × C2 × C2, Γ2a2 | Q × C2 × C2 |
32 | 32/10 | Γ2b | Γ2b |
32 | 32/11 | Γ2c1 | Γ2c1 |
32 | 32/12 | Γ2c2 | Γ2c2 |
32 | 32/13 | Γ2d | Γ2d |
32 | 32/14 | D4 × C4, Γ2e1 | D4 × C4 |
32 | 32/15 | Q × C4, Γ2e2 | Q × C4 |
32 | 32/16 | Γ2f | Γ2f |
32 | 32/17 | Γ2g | Γ2g |
32 | 32/18 | Γ2h | Γ2h |
32 | 32/19 | Γ2i | Γ2i |
32 | 32/20 | Γ2j1 | Γ2j1 |
32 | 32/21 | Γ2j2 | Γ2j2 |
32 | 32/22 | Γ2k | Γ2k |
32 | 32/23 | D8 × C2, Γ3a1 | D8 × C2 |
32 | 32/24 | Γ3a2 | Γ3a2 |
32 | 32/25 | Q8 × C2, Γ3a3 | Q8 × C2 |
32 | 32/26 | Γ3b | Γ3b |
32 | 32/27 | Γ3c1 | Γ3c1 |
32 | 32/28 | Γ3c2 | Γ3c2 |
32 | 32/29 | Γ3d1 | Γ3d1 |
32 | 32/30 | Γ3d2 | Γ3d2 |
32 | 32/31 | Γ3e | Γ3e |
32 | 32/32 | Γ3f | Γ3f |
32 | 32/33 | Γ4a1 | Γ4a1 |
32 | 32/34 | Γ4a2, Dih(C4 × C4) | Γ4a2 |
32 | 32/35 | Γ4a3 | Γ4a3 |
32 | 32/36 | Γ4b1 | Γ4b1 |
32 | 32/37 | Γ4b2 | Γ4b2 |
32 | 32/38 | Γ4c1 | Γ4c1 |
32 | 32/39 | Γ4c2 | Γ4c2 |
32 | 32/40 | Γ4c3 | Γ4c3 |
32 | 32/41 | Γ4d | Γ4d |
32 | 32/42 | Γ5a1 | Γ5a1 |
32 | 32/43 | Γ5a2 | Γ5a2 |
32 | 32/44 | Γ6a1 | Γ6a1 |
32 | 32/45 | Γ6a2 | Γ6a2 |
32 | 32/46 | Γ7a1 | Γ7a1 |
32 | 32/47 | Γ7a2 | Γ7a2 |
32 | 32/48 | Γ7a3 | Γ7a3 |
32 | 32/49 | D16 (dihedral), Γ8a1 | D16 |
32 | 32/50 | Γ8a2 | Γ8a2 |
32 | 32/51 | Q16 (dicyclic), Γ8a3 | Q16 |
n | Loop Name in [GMR] | Notation in [GMR] | Name in my listing |
---|---|---|---|
12 | 12/1 | M12(S3,2) | 12.9.1.1 |
16 | 16/1 | M16(D4,2) | 16.13.2.6 |
16 | 16/2 | M16(Q,2) | 16.9.2.435 |
16 | 16/3 | M16(Q) | 16.1.2.31 |
16 | 16/4 | M16(C2 × C4) | 16.9.2.13 |
16 | 16/5 | M16(C2 × C4,Q) | 16.5.2.279 |
20 | 20/1 | M20(D5,2) | 20.15.1.1 |
24 | 24/1 | M24(D6,2) | 24.19.2.2 |
24 | 24/2 | M24(A4,2) | 24.15.1.0 |
24 | 24/3 | M24(Q6,2) | 24.13.2.6 |
24 | 24/4 | M24(G12,C2 × C4) | 24.7.2.11 |
24 | 24/5 | M24(G12,Q8) | 24.1.2.9 |
28 | 28/1 | M28(D7,2) | 28.21.1.0 |
n | Loop Name in [GM] | Notation in [GM] | Name in my listing |
---|---|---|---|
8 | 8/1 | B8(Π1) | 8.1.4.0 |
8 | 8/2 | B8(Π2) | 8.3.2.0 |
8 | 8/3 | B8(Π3) | 8.3.2.1 |
8 | 8/4 | B8(Π4) | 8.5.4.1 |
8 | 8/5 | B8(Π5) | 8.5.4.0 |
8 | 8/6 | B8(Π6) | 8.7.2.0 |
12 | 12/1 | B12(Π,3) | 12.5.3.0 |
12 | 12/2 | B12(αβΠ,3) | 12.9.1.0 |
15 | 15/1 | NR15(3,5,1,2) | 15.10.1.0 |
15 | 15/2 | NR15(3,5,3,3) | 15.10.1.1 |
16 | 16/1 | B8(Π1) × C2 | 16.3.8.0 |
16 | 16/2 | B8(Π2) × C2 | 16.7.4.0 |
16 | 16/3 | B8(Π3) × C2 | 16.7.4.10 |
16 | 16/4 | B8(Π4) × C2 | 16.11.8.0 |
16 | 16/5 | B8(Π5) × C2 | 16.11.8.1 |
16 | 16/6 | B8(Π6) × C2 | 16.15.4.0 |
16 | 16/7 | B16(Π,4) | 16.7.4.16 |
16 | 16/8 | B16(αβΠ,4) | 16.13.2.2 |
16 | 16/9 | B16(αΓΠ,4) | 16.5.2.0 |
16 | 16/10 | B16(22,2,4) | 16.9.6.0 |
16 | 16/11 | B16(22,4,4) | 16.13.2.81 |
16 | 16/12 | C2 ×θ B8(Π6) | 16.11.2.146 |
18 | 18/1 | B18 | 18.3.3.0 |
20 | 20/1 | B20(Π,5) | 20.7.3.0 |
20 | 20/2 | B20(αβΠ,5) | 20.15.1.0 |
21 | 21/1 | NR21(3,7,1,3) | 21.14.1.0 |
21 | 21/2 | NR21(3,7,5,5) | 21.14.1.1 |
24 | 24/1 | B8(Π1) × C3 | 24.1.12.0 |
24 | 24/2 | B8(Π2) × C3 | 24.3.6.1 |
24 | 24/3 | B8(Π3) × C3 | 24.3.6.2 |
24 | 24/4 | B8(Π4) × C3 | 24.5.12.1 |
24 | 24/5 | B8(Π5) × C3 | 24.5.12.0 |
24 | 24/6 | B8(Π6) × C3 | 24.7.6.1 |
24 | 24/7 | B24(Π,6) | 24.9.4.0 |
24 | 24/8 | B24(αΓΠ,6) | 24.7.2.0 |
24 | 24/9 | B24(23,2,3) | 24.9.7.0 |
24 | 24/10 | B24(23,3,3) | 24.11.6.0 |
24 | 24/11 | B24(23,4,3) | 24.13.5.0 |
24 | 24/12 | B24(23,5,3) | 24.15.4.1 |
24 | 24/13 | B24(23,6,3) | 24.17.3.0 |
24 | 24/14 | B24(23,7,3) | 24.19.2.0 |
24 | 24/15 | B24(23,8,3) | 24.21.1.0 |
24 | 24/16 | B8(Π6) ×θ1 C3 | 24.9.1.0 |
24 | 24/17 | B8(Π6) ×θ2 C3 | 24.11.2.0 |
24 | 24/18 | B8(Π6) ×θ3 C3 | 24.13.1.0 |
24 | 24/19 | B8(Π6) ×θ5 C3 | 24.17.1.0 |
24 | 24/20 | B8(Π6) ×θ6 C3 | 24.19.2.1 |
24 | 24/21 | B8(Π6) ×θ7 C3 | 24.21.1.1 |
27 | 27/1 | NR27(3,9,1,4) | 27.20.3.0 |
27 | 27/2 | NR27(3,9,1,7) | 27.8.3.0 |
27 | 27/3 | NR27(3,9,4,4) | 27.8.3.1 |
27 | 27/4 | NR27(3,9,7,7) | 27.20.3.1 |
28 | 28/1 | B28(Π,7) | 28.9.3.0 |
28 | 28/2 | B28(αβΠ,7) | 28.21.1.1 |
30 | 30/1 | NR15(3,5,1,2) × C2 | 30.1.2.0 |
30 | 30/2 | NR15(3,5,3,3) × C2 | 30.1.2.1 |