Right Bol Loop 24.9.4.0 of order 24


01234567891011121314151617181920212223
11813151917232021142216026345912781011
22201620142119231718151365134107912118
32014021162218191323171512456781211910
41917132315182220021141631562121181079
52116142202023181519131743621810119127
62315171813192122162001454213119107812
71318191523170162214212091012811231465
81523181719131402016222112711109354612
91420210221615172313191810117128612354
10171923131815161421020221189712526143
11162122142001713191518238121097465231
12022201621141315181723197981110143526
13214365121110987141701516222018192321
14635124810117129171613015231822202119
15361542912711108013161714202119231822
16452631107128911150171413192321222018
17546213119812710161514130212223181920
18978121011356241222320192114013151716
19121071189231564201821232201615171314
20791281110142653182219212313150161417
21811910127613425192023221815171614013
22101211798465132232118201917131401615
23118109712524316211922182016141713150

Centre:   0   23

Centrum:   0   17   20   23

Nucleus:   0   23

Left Nucleus:   0   17   20   23

Middle Nucleus:   0   14   16   18   19   23

Right Nucleus:   0   14   16   18   19   23

1 Element of order 1:   0

9 Elements of order 2:   2   3   5   7   8   10   17   20   23

2 Elements of order 3:   14   16

2 Elements of order 4:   4   9

6 Elements of order 6:   13   15   18   19   21   22

4 Elements of order 12:   1   6   11   12

Commutator Subloop:   0   14   16   18   19   23

Associator Subloop:   0   14   16   18   19   23

2 Conjugacy Classes of size 1:

2 Conjugacy Classes of size 2:

3 Conjugacy Classes of size 6:

Automorphic Inverse Property:   FAILS.   (1-1)(3-1) neq (1*3)-1

Al Property:   FAILS. The left inner mapping L1,1 = (2,10,5,8,3,7)(13,20,15,21,17,22) is not an automorphism.   L1,1(1*2) neq L1,1(1)*L1,1(2)

Ar Property:   HOLDS (i.e. every right inner mapping Ra,b is an automorphism)

Right (Left, Full) Mult Group Orders:   48 (2592, 10368)


/ revised November, 2001