0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 |
1 | 18 | 13 | 15 | 19 | 17 | 23 | 20 | 21 | 14 | 22 | 16 | 0 | 2 | 6 | 3 | 4 | 5 | 9 | 12 | 7 | 8 | 10 | 11 |
2 | 22 | 0 | 16 | 20 | 14 | 21 | 19 | 23 | 17 | 18 | 15 | 13 | 6 | 5 | 1 | 3 | 4 | 10 | 7 | 9 | 12 | 11 | 8 |
3 | 20 | 14 | 0 | 21 | 16 | 22 | 18 | 19 | 13 | 23 | 17 | 15 | 1 | 2 | 4 | 5 | 6 | 7 | 8 | 12 | 11 | 9 | 10 |
4 | 19 | 17 | 13 | 23 | 15 | 18 | 22 | 20 | 0 | 21 | 14 | 16 | 3 | 1 | 5 | 6 | 2 | 12 | 11 | 8 | 10 | 7 | 9 |
5 | 21 | 16 | 14 | 22 | 0 | 20 | 23 | 18 | 15 | 19 | 13 | 17 | 4 | 3 | 6 | 2 | 1 | 8 | 10 | 11 | 9 | 12 | 7 |
6 | 23 | 15 | 17 | 18 | 13 | 19 | 21 | 22 | 16 | 20 | 0 | 14 | 5 | 4 | 2 | 1 | 3 | 11 | 9 | 10 | 7 | 8 | 12 |
7 | 13 | 18 | 19 | 15 | 23 | 17 | 0 | 16 | 22 | 14 | 21 | 20 | 9 | 10 | 12 | 8 | 11 | 2 | 3 | 1 | 4 | 6 | 5 |
8 | 15 | 23 | 18 | 17 | 19 | 13 | 14 | 0 | 20 | 16 | 22 | 21 | 12 | 7 | 11 | 10 | 9 | 3 | 5 | 4 | 6 | 1 | 2 |
9 | 14 | 20 | 21 | 0 | 22 | 16 | 15 | 17 | 23 | 13 | 19 | 18 | 10 | 11 | 7 | 12 | 8 | 6 | 1 | 2 | 3 | 5 | 4 |
10 | 17 | 19 | 23 | 13 | 18 | 15 | 16 | 14 | 21 | 0 | 20 | 22 | 11 | 8 | 9 | 7 | 12 | 5 | 2 | 6 | 1 | 4 | 3 |
11 | 16 | 21 | 22 | 14 | 20 | 0 | 17 | 13 | 19 | 15 | 18 | 23 | 8 | 12 | 10 | 9 | 7 | 4 | 6 | 5 | 2 | 3 | 1 |
12 | 0 | 22 | 20 | 16 | 21 | 14 | 13 | 15 | 18 | 17 | 23 | 19 | 7 | 9 | 8 | 11 | 10 | 1 | 4 | 3 | 5 | 2 | 6 |
13 | 2 | 1 | 4 | 3 | 6 | 5 | 12 | 11 | 10 | 9 | 8 | 7 | 14 | 17 | 0 | 15 | 16 | 22 | 20 | 18 | 19 | 23 | 21 |
14 | 6 | 3 | 5 | 1 | 2 | 4 | 8 | 10 | 11 | 7 | 12 | 9 | 17 | 16 | 13 | 0 | 15 | 23 | 18 | 22 | 20 | 21 | 19 |
15 | 3 | 6 | 1 | 5 | 4 | 2 | 9 | 12 | 7 | 11 | 10 | 8 | 0 | 13 | 16 | 17 | 14 | 20 | 21 | 19 | 23 | 18 | 22 |
16 | 4 | 5 | 2 | 6 | 3 | 1 | 10 | 7 | 12 | 8 | 9 | 11 | 15 | 0 | 17 | 14 | 13 | 19 | 23 | 21 | 22 | 20 | 18 |
17 | 5 | 4 | 6 | 2 | 1 | 3 | 11 | 9 | 8 | 12 | 7 | 10 | 16 | 15 | 14 | 13 | 0 | 21 | 22 | 23 | 18 | 19 | 20 |
18 | 9 | 7 | 8 | 12 | 10 | 11 | 3 | 5 | 6 | 2 | 4 | 1 | 22 | 23 | 20 | 19 | 21 | 14 | 0 | 13 | 15 | 17 | 16 |
19 | 12 | 10 | 7 | 11 | 8 | 9 | 2 | 3 | 1 | 5 | 6 | 4 | 20 | 18 | 21 | 23 | 22 | 0 | 16 | 15 | 17 | 13 | 14 |
20 | 7 | 9 | 12 | 8 | 11 | 10 | 1 | 4 | 2 | 6 | 5 | 3 | 18 | 22 | 19 | 21 | 23 | 13 | 15 | 0 | 16 | 14 | 17 |
21 | 8 | 11 | 9 | 10 | 12 | 7 | 6 | 1 | 3 | 4 | 2 | 5 | 19 | 20 | 23 | 22 | 18 | 15 | 17 | 16 | 14 | 0 | 13 |
22 | 10 | 12 | 11 | 7 | 9 | 8 | 4 | 6 | 5 | 1 | 3 | 2 | 23 | 21 | 18 | 20 | 19 | 17 | 13 | 14 | 0 | 16 | 15 |
23 | 11 | 8 | 10 | 9 | 7 | 12 | 5 | 2 | 4 | 3 | 1 | 6 | 21 | 19 | 22 | 18 | 20 | 16 | 14 | 17 | 13 | 15 | 0 |
Centre: 0 23
Centrum: 0 17 20 23
Nucleus: 0 23
Left Nucleus: 0 17 20 23
Middle Nucleus: 0 14 16 18 19 23
Right Nucleus: 0 14 16 18 19 23
1 Element of order 1: 0
9 Elements of order 2: 2 3 5 7 8 10 17 20 23
2 Elements of order 3: 14 16
2 Elements of order 4: 4 9
6 Elements of order 6: 13 15 18 19 21 22
4 Elements of order 12: 1 6 11 12
Commutator Subloop: 0 14 16 18 19 23
Associator Subloop: 0 14 16 18 19 23
2 Conjugacy Classes of size 1:
2 Conjugacy Classes of size 2:
3 Conjugacy Classes of size 6:
Automorphic Inverse Property: FAILS. (1-1)(3-1) neq (1*3)-1
Al Property: FAILS. The left inner mapping L1,1 = (2,10,5,8,3,7)(13,20,15,21,17,22) is not an automorphism. L1,1(1*2) neq L1,1(1)*L1,1(2)
Ar Property: HOLDS (i.e. every right inner mapping Ra,b is an automorphism)
Right (Left, Full) Mult Group Orders: 48 (2592, 10368)