Right Bol Loop 20.7.3.0 of order 20


012345678910111213141516171819
140263859715161719181011121413
203517496817191815161314101211
325709184612131410111918151716
461082937513141011121719181615
537928061418151617191112131014
684190725319181516171213141110
759836240114101112131617191518
896471503211121314101815161917
978654312016171918151410111312
101715131219181114160743891526
111916141318151210178074315692
121817101415161311193807456219
131519111016171412184380762951
141618121117191013157438029165
151013191711121618141562980734
161114181912131715109156207483
171210151813141916112915674308
181412171610111519135629138047
191311161514101817126291543870

Centre:   0

Centrum:   0   9   19

Nucleus:   0

Left Nucleus:   0   9   12   19

Middle Nucleus:   0   3   4   7   8

Right Nucleus:   0   3   4   7   8

1 Element of order 1:   0

7 Elements of order 2:   9   10   11   12   13   14   19

4 Elements of order 5:   3   4   7   8

8 Elements of order 10:   1   2   5   6   15   16   17   18

Commutator Subloop:   0   3   4   7   8

Associator Subloop:   0   3   4   7   8

1 Conjugacy Class of size 1:

2 Conjugacy Classes of size 2:

3 Conjugacy Classes of size 5:

Automorphic Inverse Property:   FAILS.   (1-1)(11-1) neq (1*11)-1

Al Property:   FAILS. The left inner mapping L1,1 = (10,12,14,11,13)(15,19,16,18,17) is not an automorphism.   L1,1(1*10) neq L1,1(1)*L1,1(10)

Ar Property:   HOLDS (i.e. every right inner mapping Ra,b is an automorphism)

Right (Left, Full) Mult Group Orders:   40 (2500, 5000)


/ revised November, 2001