Group 16.3.4.23 of order 16


0123456789101112131415
1250367491413815111210
2561074314121191081513
3014725611815131410912
4307612513111210915814
5672143012158141391011
6745230115109121114138
7436501210131415812119
8101412131115907153426
9131215118101414260357
1014118121591372406531
1115914101312836024715
1281013914111550642173
1312891510141145317602
1411151089131223571064
1591311141281061735240

Centre:   0   2   4   6

Centrum:   0   2   4   6

Nucleus:   0   1   2   3   4   5   6   7   8   9   10   11   12   13   14   15

Left Nucleus:   0   1   2   3   4   5   6   7   8   9   10   11   12   13   14   15

Middle Nucleus:   0   1   2   3   4   5   6   7   8   9   10   11   12   13   14   15

Right Nucleus:   0   1   2   3   4   5   6   7   8   9   10   11   12   13   14   15

1 Element of order 1:   0

3 Elements of order 2:   6   8   15

4 Elements of order 4:   2   4   13   14

8 Elements of order 8:   1   3   5   7   9   10   11   12

Commutator Subloop:   0   6

Associator Subloop:   0

4 Conjugacy Classes of size 1:

6 Conjugacy Classes of size 2:

Automorphic Inverse Property:   FAILS.   (1-1)(9-1) neq (1*9)-1

Al Property:   HOLDS (i.e. every left inner mapping La,b is an automorphism)

Ar Property:   HOLDS (i.e. every right inner mapping Ra,b is an automorphism)

Right (Left, Full) Mult Group Orders:   16 (16, 64)


/ revised October, 2001