0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | 24 | 25 | 26 | 27 |
1 | 0 | 5 | 4 | 3 | 2 | 19 | 18 | 21 | 24 | 27 | 26 | 23 | 25 | 22 | 20 | 17 | 16 | 7 | 6 | 15 | 8 | 14 | 12 | 9 | 13 | 11 | 10 |
2 | 3 | 0 | 19 | 6 | 1 | 4 | 5 | 7 | 11 | 8 | 9 | 10 | 15 | 12 | 13 | 14 | 22 | 21 | 24 | 16 | 18 | 17 | 27 | 26 | 20 | 25 | 23 |
3 | 2 | 7 | 0 | 1 | 18 | 24 | 21 | 27 | 19 | 23 | 25 | 22 | 26 | 17 | 16 | 15 | 20 | 5 | 4 | 13 | 10 | 12 | 14 | 6 | 11 | 9 | 8 |
4 | 5 | 18 | 1 | 0 | 7 | 9 | 8 | 10 | 6 | 12 | 13 | 14 | 11 | 16 | 17 | 20 | 15 | 2 | 3 | 25 | 27 | 23 | 22 | 19 | 26 | 24 | 21 |
5 | 4 | 1 | 6 | 19 | 0 | 3 | 2 | 18 | 26 | 21 | 24 | 27 | 20 | 23 | 25 | 22 | 14 | 8 | 9 | 17 | 7 | 16 | 10 | 11 | 15 | 13 | 12 |
6 | 7 | 21 | 5 | 2 | 8 | 11 | 10 | 12 | 4 | 14 | 15 | 16 | 9 | 20 | 22 | 25 | 13 | 0 | 1 | 26 | 23 | 27 | 17 | 3 | 24 | 19 | 18 |
7 | 6 | 3 | 9 | 24 | 4 | 1 | 0 | 2 | 25 | 18 | 19 | 21 | 16 | 27 | 26 | 23 | 12 | 10 | 11 | 22 | 5 | 20 | 8 | 13 | 17 | 15 | 14 |
8 | 9 | 19 | 11 | 26 | 6 | 5 | 4 | 0 | 20 | 2 | 3 | 18 | 14 | 21 | 24 | 27 | 10 | 12 | 13 | 23 | 1 | 25 | 7 | 15 | 22 | 17 | 16 |
9 | 8 | 27 | 7 | 18 | 10 | 13 | 12 | 14 | 0 | 16 | 17 | 20 | 6 | 25 | 23 | 26 | 11 | 4 | 5 | 24 | 22 | 21 | 15 | 1 | 19 | 3 | 2 |
10 | 11 | 24 | 13 | 25 | 9 | 7 | 6 | 4 | 16 | 0 | 1 | 2 | 12 | 18 | 19 | 21 | 8 | 14 | 15 | 27 | 3 | 26 | 5 | 17 | 23 | 22 | 20 |
11 | 10 | 23 | 8 | 21 | 12 | 15 | 14 | 16 | 2 | 20 | 22 | 25 | 4 | 26 | 27 | 24 | 9 | 6 | 7 | 19 | 17 | 18 | 13 | 5 | 3 | 1 | 0 |
12 | 13 | 26 | 15 | 20 | 11 | 8 | 9 | 6 | 14 | 4 | 5 | 0 | 10 | 2 | 3 | 18 | 7 | 16 | 17 | 21 | 19 | 24 | 1 | 22 | 27 | 23 | 25 |
13 | 12 | 22 | 10 | 27 | 14 | 17 | 16 | 20 | 18 | 25 | 23 | 26 | 0 | 24 | 21 | 19 | 6 | 9 | 8 | 3 | 15 | 2 | 11 | 7 | 1 | 5 | 4 |
14 | 15 | 25 | 17 | 16 | 13 | 10 | 11 | 9 | 12 | 6 | 7 | 4 | 8 | 0 | 1 | 2 | 5 | 20 | 22 | 18 | 24 | 19 | 3 | 23 | 21 | 27 | 26 |
15 | 14 | 17 | 12 | 23 | 16 | 22 | 20 | 25 | 21 | 26 | 27 | 24 | 2 | 19 | 18 | 3 | 4 | 11 | 10 | 1 | 13 | 0 | 9 | 8 | 5 | 7 | 6 |
16 | 17 | 20 | 22 | 14 | 15 | 12 | 13 | 11 | 10 | 9 | 8 | 6 | 7 | 4 | 5 | 0 | 1 | 25 | 23 | 2 | 26 | 3 | 19 | 27 | 18 | 21 | 24 |
17 | 16 | 15 | 14 | 22 | 20 | 23 | 25 | 26 | 27 | 24 | 21 | 19 | 18 | 3 | 2 | 1 | 0 | 13 | 12 | 5 | 11 | 4 | 6 | 10 | 7 | 8 | 9 |
18 | 19 | 4 | 24 | 9 | 3 | 0 | 1 | 5 | 13 | 7 | 6 | 8 | 17 | 10 | 11 | 12 | 23 | 27 | 26 | 14 | 2 | 15 | 21 | 25 | 16 | 20 | 22 |
19 | 18 | 8 | 2 | 5 | 21 | 26 | 27 | 23 | 3 | 22 | 20 | 17 | 24 | 15 | 14 | 13 | 25 | 1 | 0 | 11 | 12 | 10 | 16 | 4 | 9 | 6 | 7 |
20 | 22 | 16 | 23 | 12 | 17 | 14 | 15 | 13 | 8 | 11 | 10 | 9 | 5 | 6 | 7 | 4 | 3 | 26 | 27 | 0 | 25 | 1 | 24 | 21 | 2 | 18 | 19 |
21 | 24 | 6 | 26 | 11 | 19 | 2 | 3 | 1 | 15 | 5 | 4 | 7 | 22 | 8 | 9 | 10 | 27 | 23 | 25 | 12 | 0 | 13 | 18 | 20 | 14 | 16 | 17 |
22 | 20 | 13 | 16 | 17 | 25 | 27 | 26 | 24 | 23 | 19 | 18 | 3 | 21 | 1 | 0 | 5 | 2 | 15 | 14 | 7 | 9 | 6 | 4 | 12 | 8 | 10 | 11 |
23 | 25 | 11 | 20 | 15 | 26 | 21 | 24 | 19 | 22 | 3 | 2 | 1 | 27 | 5 | 4 | 7 | 18 | 17 | 16 | 8 | 6 | 9 | 0 | 14 | 10 | 12 | 13 |
24 | 21 | 10 | 18 | 7 | 27 | 25 | 23 | 22 | 1 | 17 | 16 | 15 | 19 | 13 | 12 | 11 | 26 | 3 | 2 | 9 | 14 | 8 | 20 | 0 | 6 | 4 | 5 |
25 | 23 | 14 | 27 | 10 | 22 | 16 | 17 | 15 | 7 | 13 | 12 | 11 | 1 | 9 | 8 | 6 | 19 | 24 | 21 | 4 | 20 | 5 | 26 | 18 | 0 | 2 | 3 |
26 | 27 | 12 | 21 | 8 | 23 | 20 | 22 | 17 | 5 | 15 | 14 | 13 | 3 | 11 | 10 | 9 | 24 | 19 | 18 | 6 | 16 | 7 | 25 | 2 | 4 | 0 | 1 |
27 | 26 | 9 | 25 | 13 | 24 | 18 | 19 | 3 | 17 | 1 | 0 | 5 | 23 | 7 | 6 | 8 | 21 | 22 | 20 | 10 | 4 | 11 | 2 | 16 | 12 | 14 | 15 |
Centre: 0
Centrum: 0
Nucleus: 0
Left Nucleus: 0 1 16 17
Middle Nucleus: 0 6 11 15 18 22 27
Right Nucleus: 0 6 11 15 18 22 27
1 Element of order 1: 0
21 Elements of order 2: 1 2 3 4 5 7 8 9 10 12 13 14 16 17 19 20 21 23 24 25 26
6 Elements of order 7: 6 11 15 18 22 27
Commutator Subloop: 0 6 11 15 18 22 27
Associator Subloop: 0 6 11 15 18 22 27
1 Conjugacy Class of size 1:
3 Conjugacy Classes of size 2:
3 Conjugacy Classes of size 7:
Automorphic Inverse Property: FAILS. (1-1)(7-1) neq (1*7)-1
Al Property: FAILS. The left inner mapping L1,2 = (2,4,9,13,17,23,21)(3,24,25,16,12,8,5) is not an automorphism. L1,2(2*1) neq L1,2(2)*L1,2(1)
Ar Property: HOLDS (i.e. every right inner mapping Ra,b is an automorphism)
Right (Left, Full) Mult Group Orders: 56 (9604, 19208)