0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | 24 | 25 | 26 |
1 | 2 | 0 | 4 | 7 | 12 | 23 | 3 | 9 | 15 | 14 | 13 | 25 | 17 | 16 | 8 | 10 | 11 | 6 | 24 | 19 | 22 | 26 | 18 | 20 | 5 | 21 |
2 | 0 | 1 | 6 | 23 | 3 | 5 | 18 | 10 | 14 | 17 | 9 | 4 | 15 | 11 | 16 | 13 | 8 | 25 | 20 | 24 | 26 | 21 | 12 | 19 | 7 | 22 |
3 | 5 | 7 | 8 | 17 | 9 | 10 | 11 | 0 | 1 | 19 | 2 | 15 | 24 | 26 | 22 | 21 | 20 | 16 | 6 | 4 | 18 | 12 | 13 | 23 | 14 | 25 |
4 | 6 | 23 | 9 | 15 | 10 | 8 | 14 | 1 | 22 | 26 | 24 | 13 | 20 | 21 | 0 | 19 | 2 | 11 | 25 | 12 | 7 | 3 | 17 | 18 | 16 | 5 |
5 | 7 | 3 | 16 | 10 | 11 | 14 | 13 | 21 | 19 | 24 | 0 | 8 | 1 | 20 | 26 | 2 | 22 | 15 | 23 | 6 | 12 | 25 | 9 | 4 | 17 | 18 |
6 | 23 | 4 | 10 | 13 | 8 | 9 | 16 | 2 | 24 | 1 | 21 | 17 | 19 | 22 | 20 | 0 | 26 | 14 | 18 | 25 | 3 | 5 | 15 | 12 | 11 | 7 |
7 | 3 | 5 | 11 | 8 | 14 | 16 | 17 | 22 | 0 | 21 | 20 | 9 | 2 | 19 | 1 | 26 | 24 | 13 | 4 | 23 | 25 | 18 | 10 | 6 | 15 | 12 |
8 | 16 | 10 | 0 | 1 | 21 | 22 | 19 | 3 | 18 | 12 | 6 | 2 | 23 | 25 | 7 | 4 | 5 | 20 | 15 | 9 | 17 | 11 | 24 | 13 | 26 | 14 |
9 | 15 | 13 | 1 | 19 | 2 | 24 | 0 | 4 | 12 | 23 | 3 | 26 | 18 | 5 | 25 | 6 | 7 | 22 | 14 | 11 | 10 | 8 | 20 | 17 | 21 | 16 |
10 | 8 | 16 | 2 | 26 | 24 | 1 | 21 | 6 | 23 | 18 | 4 | 20 | 12 | 7 | 5 | 3 | 25 | 0 | 9 | 13 | 14 | 17 | 19 | 15 | 22 | 11 |
11 | 14 | 17 | 22 | 24 | 0 | 21 | 20 | 7 | 3 | 4 | 5 | 1 | 6 | 12 | 18 | 25 | 23 | 26 | 16 | 8 | 13 | 9 | 2 | 10 | 19 | 15 |
12 | 25 | 18 | 15 | 14 | 13 | 17 | 9 | 19 | 26 | 20 | 1 | 16 | 22 | 2 | 21 | 24 | 0 | 8 | 5 | 3 | 23 | 4 | 11 | 7 | 10 | 6 |
13 | 9 | 15 | 24 | 20 | 1 | 2 | 22 | 23 | 5 | 7 | 12 | 19 | 25 | 3 | 6 | 18 | 4 | 21 | 11 | 17 | 16 | 10 | 26 | 14 | 0 | 8 |
14 | 17 | 11 | 26 | 21 | 20 | 19 | 2 | 25 | 4 | 6 | 7 | 22 | 3 | 23 | 12 | 5 | 18 | 1 | 10 | 16 | 9 | 15 | 0 | 8 | 24 | 13 |
15 | 13 | 9 | 19 | 0 | 26 | 20 | 1 | 12 | 25 | 5 | 18 | 21 | 7 | 6 | 4 | 23 | 3 | 24 | 17 | 14 | 8 | 16 | 22 | 11 | 2 | 10 |
16 | 10 | 8 | 21 | 2 | 22 | 0 | 26 | 5 | 6 | 3 | 25 | 24 | 4 | 18 | 23 | 7 | 12 | 19 | 13 | 15 | 11 | 14 | 1 | 9 | 20 | 17 |
17 | 11 | 14 | 20 | 22 | 19 | 26 | 24 | 18 | 7 | 25 | 23 | 0 | 5 | 4 | 3 | 12 | 6 | 2 | 8 | 10 | 15 | 13 | 21 | 16 | 1 | 9 |
18 | 12 | 25 | 17 | 11 | 15 | 13 | 8 | 20 | 2 | 0 | 26 | 14 | 21 | 1 | 24 | 22 | 19 | 10 | 3 | 7 | 6 | 23 | 16 | 5 | 9 | 4 |
19 | 24 | 20 | 12 | 25 | 23 | 4 | 5 | 15 | 8 | 16 | 17 | 18 | 11 | 10 | 9 | 14 | 13 | 3 | 21 | 26 | 0 | 1 | 7 | 22 | 6 | 2 |
20 | 19 | 24 | 18 | 6 | 7 | 25 | 23 | 17 | 11 | 8 | 14 | 3 | 16 | 9 | 13 | 15 | 10 | 12 | 26 | 22 | 2 | 0 | 5 | 21 | 4 | 1 |
21 | 22 | 26 | 5 | 12 | 6 | 3 | 25 | 16 | 10 | 13 | 8 | 23 | 9 | 17 | 14 | 11 | 15 | 7 | 0 | 2 | 19 | 24 | 4 | 1 | 18 | 20 |
22 | 26 | 21 | 7 | 3 | 25 | 18 | 4 | 11 | 13 | 9 | 16 | 5 | 10 | 15 | 17 | 8 | 14 | 23 | 1 | 0 | 24 | 20 | 6 | 2 | 12 | 19 |
23 | 4 | 6 | 13 | 16 | 17 | 15 | 10 | 24 | 20 | 22 | 19 | 11 | 26 | 0 | 2 | 1 | 21 | 9 | 12 | 18 | 5 | 7 | 14 | 25 | 8 | 3 |
24 | 20 | 19 | 23 | 18 | 4 | 12 | 6 | 13 | 17 | 15 | 10 | 7 | 14 | 8 | 11 | 9 | 16 | 5 | 22 | 21 | 1 | 2 | 25 | 26 | 3 | 0 |
25 | 18 | 12 | 14 | 9 | 16 | 11 | 15 | 26 | 21 | 2 | 22 | 10 | 0 | 24 | 19 | 20 | 1 | 17 | 7 | 5 | 4 | 6 | 8 | 3 | 13 | 23 |
26 | 21 | 22 | 25 | 5 | 18 | 7 | 12 | 14 | 16 | 11 | 15 | 6 | 8 | 13 | 10 | 17 | 9 | 4 | 2 | 1 | 20 | 19 | 3 | 0 | 23 | 24 |
Centre: 0 24 26
Centrum: 0 24 26
Nucleus: 0 24 26
Left Nucleus: 0 6 7 9 12 16 17 24 26
Middle Nucleus: 0 24 26
Right Nucleus: 0 24 26
1 Element of order 1: 0
20 Elements of order 3: 1 2 3 4 5 8 10 11 13 14 15 18 19 20 21 22 23 24 25 26
6 Elements of order 9: 6 7 9 12 16 17
Commutator Subloop: 0 24 26
Associator Subloop: 0 24 26
3 Conjugacy Classes of size 1:
8 Conjugacy Classes of size 3:
Automorphic Inverse Property: FAILS. (1-1)(4-1) neq (1*4)-1
Al Property: HOLDS (i.e. every left inner mapping La,b is an automorphism)
Ar Property: HOLDS (i.e. every right inner mapping Ra,b is an automorphism)
Right (Left, Full) Mult Group Orders: 81 (243, 2187)