Moufang Loop 24.7.2.11 of order 24


01234567891011121314151617181920212223
12305746911810171819161215141323222021
23017654111098151413121716191821202322
30126475108119161918171512131422232120
45762310121716151120218910232214131819
57643021141918132111820232210915121716
64571203131819142081121222391012151617
76450132151617128212011109222313141918
89111012171615013242223765202118191314
91110814191813120323472220215617161215
10891113181914302122742321206516171512
11108915161712231072322456212019181413
12141513112120842322721301819171656910
13121415923221062021518161719021347811
14151312102223952120619171618203174118
15131214820211172223403121918161765109
16181719201182122472310231314121591065
17191618218112023742232011413151210956
18171916231092220562114121513132011847
19161817229102321652013151214310281174
20232122171512161814131959106471182013
21222023161215171913141861095748110231
22202321181413191612151796510811471302
23212220191314181715121610569118743120

Centre:   0   2

Centrum:   0   2

Nucleus:   0   2

Left Nucleus:   0   2

Middle Nucleus:   0   2

Right Nucleus:   0   2

1 Element of order 1:   0

7 Elements of order 2:   2   5   6   8   11   22   23

2 Elements of order 3:   13   16

12 Elements of order 4:   1   3   4   7   9   10   12   15   18   19   20   21

2 Elements of order 6:   14   17

Commutator Subloop:   0   13   16

Associator Subloop:   0   13   16

2 Conjugacy Classes of size 1:

2 Conjugacy Classes of size 2:

6 Conjugacy Classes of size 3:

Automorphic Inverse Property:   FAILS.   (1-1)(13-1) neq (1*13)-1

Al Property:   FAILS. The left inner mapping L1,12 = (4,9,20)(5,23,11)(6,22,8)(7,10,21) is not an automorphism.   L1,12(1*4) neq L1,12(1)*L1,12(4)

Ar Property:   FAILS. The right inner mapping R1,12 = (4,9,20)(5,23,11)(6,22,8)(7,10,21) is not an automorphism.   R1,12(1*4) neq R1,12(1)*R1,12(4)

Right (Left, Full) Mult Group Orders:   1296 (1296, 5184)


/ revised November, 2001