0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 |
1 | 2 | 3 | 0 | 5 | 7 | 4 | 6 | 9 | 11 | 8 | 10 | 17 | 18 | 19 | 16 | 12 | 15 | 14 | 13 | 23 | 22 | 20 | 21 |
2 | 3 | 0 | 1 | 7 | 6 | 5 | 4 | 11 | 10 | 9 | 8 | 15 | 14 | 13 | 12 | 17 | 16 | 19 | 18 | 21 | 20 | 23 | 22 |
3 | 0 | 1 | 2 | 6 | 4 | 7 | 5 | 10 | 8 | 11 | 9 | 16 | 19 | 18 | 17 | 15 | 12 | 13 | 14 | 22 | 23 | 21 | 20 |
4 | 5 | 7 | 6 | 2 | 3 | 1 | 0 | 12 | 17 | 16 | 15 | 11 | 20 | 21 | 8 | 9 | 10 | 23 | 22 | 14 | 13 | 18 | 19 |
5 | 7 | 6 | 4 | 3 | 0 | 2 | 1 | 14 | 19 | 18 | 13 | 21 | 11 | 8 | 20 | 23 | 22 | 10 | 9 | 15 | 12 | 17 | 16 |
6 | 4 | 5 | 7 | 1 | 2 | 0 | 3 | 13 | 18 | 19 | 14 | 20 | 8 | 11 | 21 | 22 | 23 | 9 | 10 | 12 | 15 | 16 | 17 |
7 | 6 | 4 | 5 | 0 | 1 | 3 | 2 | 15 | 16 | 17 | 12 | 8 | 21 | 20 | 11 | 10 | 9 | 22 | 23 | 13 | 14 | 19 | 18 |
8 | 9 | 11 | 10 | 12 | 17 | 16 | 15 | 0 | 1 | 3 | 2 | 4 | 22 | 23 | 7 | 6 | 5 | 20 | 21 | 18 | 19 | 13 | 14 |
9 | 11 | 10 | 8 | 14 | 19 | 18 | 13 | 1 | 2 | 0 | 3 | 23 | 4 | 7 | 22 | 20 | 21 | 5 | 6 | 17 | 16 | 12 | 15 |
10 | 8 | 9 | 11 | 13 | 18 | 19 | 14 | 3 | 0 | 2 | 1 | 22 | 7 | 4 | 23 | 21 | 20 | 6 | 5 | 16 | 17 | 15 | 12 |
11 | 10 | 8 | 9 | 15 | 16 | 17 | 12 | 2 | 3 | 1 | 0 | 7 | 23 | 22 | 4 | 5 | 6 | 21 | 20 | 19 | 18 | 14 | 13 |
12 | 14 | 15 | 13 | 11 | 21 | 20 | 8 | 4 | 23 | 22 | 7 | 2 | 1 | 3 | 0 | 18 | 19 | 17 | 16 | 5 | 6 | 9 | 10 |
13 | 12 | 14 | 15 | 9 | 23 | 22 | 10 | 6 | 20 | 21 | 5 | 18 | 16 | 17 | 19 | 0 | 2 | 1 | 3 | 4 | 7 | 8 | 11 |
14 | 15 | 13 | 12 | 10 | 22 | 23 | 9 | 5 | 21 | 20 | 6 | 19 | 17 | 16 | 18 | 2 | 0 | 3 | 1 | 7 | 4 | 11 | 8 |
15 | 13 | 12 | 14 | 8 | 20 | 21 | 11 | 7 | 22 | 23 | 4 | 0 | 3 | 1 | 2 | 19 | 18 | 16 | 17 | 6 | 5 | 10 | 9 |
16 | 18 | 17 | 19 | 20 | 11 | 8 | 21 | 22 | 4 | 7 | 23 | 1 | 0 | 2 | 3 | 13 | 14 | 12 | 15 | 9 | 10 | 6 | 5 |
17 | 19 | 16 | 18 | 21 | 8 | 11 | 20 | 23 | 7 | 4 | 22 | 3 | 2 | 0 | 1 | 14 | 13 | 15 | 12 | 10 | 9 | 5 | 6 |
18 | 17 | 19 | 16 | 23 | 10 | 9 | 22 | 20 | 5 | 6 | 21 | 14 | 12 | 15 | 13 | 1 | 3 | 2 | 0 | 11 | 8 | 4 | 7 |
19 | 16 | 18 | 17 | 22 | 9 | 10 | 23 | 21 | 6 | 5 | 20 | 13 | 15 | 12 | 14 | 3 | 1 | 0 | 2 | 8 | 11 | 7 | 4 |
20 | 23 | 21 | 22 | 17 | 15 | 12 | 16 | 18 | 14 | 13 | 19 | 5 | 9 | 10 | 6 | 4 | 7 | 11 | 8 | 2 | 0 | 1 | 3 |
21 | 22 | 20 | 23 | 16 | 12 | 15 | 17 | 19 | 13 | 14 | 18 | 6 | 10 | 9 | 5 | 7 | 4 | 8 | 11 | 0 | 2 | 3 | 1 |
22 | 20 | 23 | 21 | 18 | 14 | 13 | 19 | 16 | 12 | 15 | 17 | 9 | 6 | 5 | 10 | 8 | 11 | 4 | 7 | 1 | 3 | 0 | 2 |
23 | 21 | 22 | 20 | 19 | 13 | 14 | 18 | 17 | 15 | 12 | 16 | 10 | 5 | 6 | 9 | 11 | 8 | 7 | 4 | 3 | 1 | 2 | 0 |
Centre: 0 2
Centrum: 0 2
Nucleus: 0 2
Left Nucleus: 0 2
Middle Nucleus: 0 2
Right Nucleus: 0 2
1 Element of order 1: 0
7 Elements of order 2: 2 5 6 8 11 22 23
2 Elements of order 3: 13 16
12 Elements of order 4: 1 3 4 7 9 10 12 15 18 19 20 21
2 Elements of order 6: 14 17
Commutator Subloop: 0 13 16
Associator Subloop: 0 13 16
2 Conjugacy Classes of size 1:
2 Conjugacy Classes of size 2:
6 Conjugacy Classes of size 3:
Automorphic Inverse Property: FAILS. (1-1)(13-1) neq (1*13)-1
Al Property: FAILS. The left inner mapping L1,12 = (4,9,20)(5,23,11)(6,22,8)(7,10,21) is not an automorphism. L1,12(1*4) neq L1,12(1)*L1,12(4)
Ar Property: FAILS. The right inner mapping R1,12 = (4,9,20)(5,23,11)(6,22,8)(7,10,21) is not an automorphism. R1,12(1*4) neq R1,12(1)*R1,12(4)
Right (Left, Full) Mult Group Orders: 1296 (1296, 5184)