0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 |
1 | 2 | 5 | 0 | 3 | 4 | 7 | 11 | 6 | 8 | 9 | 10 | 13 | 17 | 12 | 14 | 15 | 16 | 19 | 20 | 21 | 22 | 23 | 18 |
2 | 5 | 4 | 1 | 0 | 3 | 11 | 10 | 7 | 6 | 8 | 9 | 17 | 16 | 13 | 12 | 14 | 15 | 20 | 21 | 22 | 23 | 18 | 19 |
3 | 0 | 1 | 4 | 5 | 2 | 8 | 6 | 9 | 10 | 11 | 7 | 14 | 12 | 15 | 16 | 17 | 13 | 23 | 18 | 19 | 20 | 21 | 22 |
4 | 3 | 0 | 5 | 2 | 1 | 9 | 8 | 10 | 11 | 7 | 6 | 15 | 14 | 16 | 17 | 13 | 12 | 22 | 23 | 18 | 19 | 20 | 21 |
5 | 4 | 3 | 2 | 1 | 0 | 10 | 9 | 11 | 7 | 6 | 8 | 16 | 15 | 17 | 13 | 12 | 14 | 21 | 22 | 23 | 18 | 19 | 20 |
6 | 7 | 11 | 8 | 9 | 10 | 5 | 4 | 2 | 1 | 0 | 3 | 18 | 19 | 23 | 22 | 21 | 20 | 16 | 15 | 14 | 12 | 13 | 17 |
7 | 11 | 10 | 6 | 8 | 9 | 4 | 3 | 5 | 2 | 1 | 0 | 19 | 20 | 18 | 23 | 22 | 21 | 15 | 14 | 12 | 13 | 17 | 16 |
8 | 6 | 7 | 9 | 10 | 11 | 2 | 5 | 1 | 0 | 3 | 4 | 23 | 18 | 22 | 21 | 20 | 19 | 17 | 16 | 15 | 14 | 12 | 13 |
9 | 8 | 6 | 10 | 11 | 7 | 1 | 2 | 0 | 3 | 4 | 5 | 22 | 23 | 21 | 20 | 19 | 18 | 13 | 17 | 16 | 15 | 14 | 12 |
10 | 9 | 8 | 11 | 7 | 6 | 0 | 1 | 3 | 4 | 5 | 2 | 21 | 22 | 20 | 19 | 18 | 23 | 12 | 13 | 17 | 16 | 15 | 14 |
11 | 10 | 9 | 7 | 6 | 8 | 3 | 0 | 4 | 5 | 2 | 1 | 20 | 21 | 19 | 18 | 23 | 22 | 14 | 12 | 13 | 17 | 16 | 15 |
12 | 13 | 17 | 14 | 15 | 16 | 21 | 22 | 20 | 19 | 18 | 23 | 1 | 2 | 0 | 3 | 4 | 5 | 7 | 11 | 10 | 9 | 8 | 6 |
13 | 17 | 16 | 12 | 14 | 15 | 22 | 23 | 21 | 20 | 19 | 18 | 2 | 5 | 1 | 0 | 3 | 4 | 11 | 10 | 9 | 8 | 6 | 7 |
14 | 12 | 13 | 15 | 16 | 17 | 20 | 21 | 19 | 18 | 23 | 22 | 0 | 1 | 3 | 4 | 5 | 2 | 6 | 7 | 11 | 10 | 9 | 8 |
15 | 14 | 12 | 16 | 17 | 13 | 19 | 20 | 18 | 23 | 22 | 21 | 3 | 0 | 4 | 5 | 2 | 1 | 8 | 6 | 7 | 11 | 10 | 9 |
16 | 15 | 14 | 17 | 13 | 12 | 18 | 19 | 23 | 22 | 21 | 20 | 4 | 3 | 5 | 2 | 1 | 0 | 9 | 8 | 6 | 7 | 11 | 10 |
17 | 16 | 15 | 13 | 12 | 14 | 23 | 18 | 22 | 21 | 20 | 19 | 5 | 4 | 2 | 1 | 0 | 3 | 10 | 9 | 8 | 6 | 7 | 11 |
18 | 19 | 20 | 23 | 22 | 21 | 12 | 13 | 14 | 15 | 16 | 17 | 7 | 11 | 6 | 8 | 9 | 10 | 4 | 3 | 0 | 1 | 2 | 5 |
19 | 20 | 21 | 18 | 23 | 22 | 13 | 17 | 12 | 14 | 15 | 16 | 11 | 10 | 7 | 6 | 8 | 9 | 3 | 0 | 1 | 2 | 5 | 4 |
20 | 21 | 22 | 19 | 18 | 23 | 17 | 16 | 13 | 12 | 14 | 15 | 10 | 9 | 11 | 7 | 6 | 8 | 0 | 1 | 2 | 5 | 4 | 3 |
21 | 22 | 23 | 20 | 19 | 18 | 16 | 15 | 17 | 13 | 12 | 14 | 9 | 8 | 10 | 11 | 7 | 6 | 1 | 2 | 5 | 4 | 3 | 0 |
22 | 23 | 18 | 21 | 20 | 19 | 15 | 14 | 16 | 17 | 13 | 12 | 8 | 6 | 9 | 10 | 11 | 7 | 2 | 5 | 4 | 3 | 0 | 1 |
23 | 18 | 19 | 22 | 21 | 20 | 14 | 12 | 15 | 16 | 17 | 13 | 6 | 7 | 8 | 9 | 10 | 11 | 5 | 4 | 3 | 0 | 1 | 2 |
Centre: 0 1 2 3 4 5
Centrum: 0 1 2 3 4 5
Nucleus: 0 1 2 3 4 5
Left Nucleus: 0 1 2 3 4 5 6 7 8 9 10 11
Middle Nucleus: 0 1 2 3 4 5
Right Nucleus: 0 1 2 3 4 5
1 Element of order 1: 0
3 Elements of order 2: 5 19 22
2 Elements of order 3: 2 4
4 Elements of order 4: 6 10 13 15
6 Elements of order 6: 1 3 18 20 21 23
8 Elements of order 12: 7 8 9 11 12 14 16 17
Commutator Subloop: 0 5
Associator Subloop: 0 5
6 Conjugacy Classes of size 1:
9 Conjugacy Classes of size 2:
Automorphic Inverse Property: HOLDS
Al Property: HOLDS (i.e. every left inner mapping La,b is an automorphism)
Ar Property: HOLDS (i.e. every right inner mapping Ra,b is an automorphism)
Right (Left, Full) Mult Group Orders: 48 (96, 192)