Group 16.11.4.6 of order 16


0123456789101112131415
1032547698121310111514
2406173510138151491211
3517062412119141581013
4260715313101498151112
5371604211121589141310
6745230114151312111089
7654321015141110131298
8911131210141501524367
9813111012151410435276
1013159148121124701635
1112814915131053076142
1211148159101335610724
1310915814111242167053
1415121011138967342501
1514101213119876253410

Centre:   0   7   9   14

Centrum:   0   7   9   14

Nucleus:   0   1   2   3   4   5   6   7   8   9   10   11   12   13   14   15

Left Nucleus:   0   1   2   3   4   5   6   7   8   9   10   11   12   13   14   15

Middle Nucleus:   0   1   2   3   4   5   6   7   8   9   10   11   12   13   14   15

Right Nucleus:   0   1   2   3   4   5   6   7   8   9   10   11   12   13   14   15

1 Element of order 1:   0

11 Elements of order 2:   1   2   5   6   7   8   9   12   13   14   15

4 Elements of order 4:   3   4   10   11

Commutator Subloop:   0   7

Associator Subloop:   0

4 Conjugacy Classes of size 1:

6 Conjugacy Classes of size 2:

Automorphic Inverse Property:   FAILS.   (1-1)(3-1) neq (1*3)-1

Al Property:   HOLDS (i.e. every left inner mapping La,b is an automorphism)

Ar Property:   HOLDS (i.e. every right inner mapping Ra,b is an automorphism)

Right (Left, Full) Mult Group Orders:   16 (16, 64)


/ revised October, 2001