0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 |
1 | 2 | 0 | 4 | 5 | 3 | 10 | 8 | 9 | 7 | 11 | 6 | 13 | 14 | 12 |
2 | 0 | 1 | 5 | 3 | 4 | 11 | 9 | 7 | 8 | 6 | 10 | 14 | 12 | 13 |
3 | 4 | 5 | 6 | 10 | 11 | 14 | 1 | 2 | 0 | 12 | 13 | 8 | 9 | 7 |
4 | 5 | 3 | 10 | 11 | 6 | 12 | 2 | 0 | 1 | 13 | 14 | 9 | 7 | 8 |
5 | 3 | 4 | 11 | 6 | 10 | 13 | 0 | 1 | 2 | 14 | 12 | 7 | 8 | 9 |
6 | 10 | 11 | 14 | 12 | 13 | 7 | 4 | 5 | 3 | 8 | 9 | 2 | 0 | 1 |
7 | 8 | 9 | 1 | 2 | 0 | 4 | 12 | 13 | 14 | 5 | 3 | 11 | 6 | 10 |
8 | 9 | 7 | 2 | 0 | 1 | 5 | 13 | 14 | 12 | 3 | 4 | 6 | 10 | 11 |
9 | 7 | 8 | 0 | 1 | 2 | 3 | 14 | 12 | 13 | 4 | 5 | 10 | 11 | 6 |
10 | 11 | 6 | 12 | 13 | 14 | 8 | 5 | 3 | 4 | 9 | 7 | 0 | 1 | 2 |
11 | 6 | 10 | 13 | 14 | 12 | 9 | 3 | 4 | 5 | 7 | 8 | 1 | 2 | 0 |
12 | 13 | 14 | 8 | 9 | 7 | 2 | 11 | 6 | 10 | 0 | 1 | 3 | 4 | 5 |
13 | 14 | 12 | 9 | 7 | 8 | 0 | 6 | 10 | 11 | 1 | 2 | 4 | 5 | 3 |
14 | 12 | 13 | 7 | 8 | 9 | 1 | 10 | 11 | 6 | 2 | 0 | 5 | 3 | 4 |
Centre: 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14
Centrum: 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14
Nucleus: 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14
Left Nucleus: 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14
Middle Nucleus: 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14
Right Nucleus: 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14
1 Element of order 1: 0
2 Elements of order 3: 1 2
4 Elements of order 5: 4 8 11 14
8 Elements of order 15: 3 5 6 7 9 10 12 13
Commutator Subloop: 0
Associator Subloop: 0
15 Conjugacy Classes of size 1:
Automorphic Inverse Property: HOLDS
Al Property: HOLDS (i.e. every left inner mapping La,b is an automorphism)
Ar Property: HOLDS (i.e. every right inner mapping Ra,b is an automorphism)
Right (Left, Full) Mult Group Orders: 15 (15, 15)