Group 16.7.16.0 of order 16


0123456789101112131415
1032547698111015141312
2310675410119814121513
3201764511108913151214
4567012312151413811109
5476103215121314910118
6754231014131512108911
7645320113141215119810
8910111215141310325674
9811101512131401234765
1011981413151232017546
1110891314121523106457
1215141389101154761230
1314121511108967542013
1413151210119876453102
1512131498111045670321

Centre:   0   1   2   3   4   5   6   7   8   9   10   11   12   13   14   15

Centrum:   0   1   2   3   4   5   6   7   8   9   10   11   12   13   14   15

Nucleus:   0   1   2   3   4   5   6   7   8   9   10   11   12   13   14   15

Left Nucleus:   0   1   2   3   4   5   6   7   8   9   10   11   12   13   14   15

Middle Nucleus:   0   1   2   3   4   5   6   7   8   9   10   11   12   13   14   15

Right Nucleus:   0   1   2   3   4   5   6   7   8   9   10   11   12   13   14   15

1 Element of order 1:   0

7 Elements of order 2:   1   4   5   10   11   13   14

8 Elements of order 4:   2   3   6   7   8   9   12   15

Commutator Subloop:   0

Associator Subloop:   0

16 Conjugacy Classes of size 1:

Automorphic Inverse Property:   HOLDS

Al Property:   HOLDS (i.e. every left inner mapping La,b is an automorphism)

Ar Property:   HOLDS (i.e. every right inner mapping Ra,b is an automorphism)

Right (Left, Full) Mult Group Orders:   16 (16, 16)


/ revised October, 2001