0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 |
1 | 16 | 15 | 17 | 14 | 13 | 0 | 18 | 20 | 19 | 21 | 22 | 23 | 7 | 6 | 8 | 4 | 9 | 3 | 2 | 5 | 10 | 11 | 12 |
2 | 15 | 0 | 16 | 17 | 14 | 13 | 22 | 21 | 23 | 18 | 19 | 20 | 11 | 5 | 10 | 3 | 12 | 1 | 6 | 4 | 8 | 7 | 9 |
3 | 17 | 16 | 14 | 13 | 0 | 15 | 21 | 23 | 22 | 20 | 18 | 19 | 10 | 2 | 12 | 5 | 11 | 4 | 1 | 6 | 7 | 9 | 8 |
4 | 14 | 17 | 13 | 0 | 15 | 16 | 20 | 19 | 18 | 23 | 21 | 22 | 8 | 1 | 9 | 6 | 7 | 5 | 3 | 2 | 11 | 12 | 10 |
5 | 13 | 14 | 0 | 15 | 16 | 17 | 23 | 22 | 21 | 19 | 20 | 18 | 12 | 3 | 11 | 2 | 10 | 6 | 4 | 1 | 9 | 8 | 7 |
6 | 0 | 13 | 15 | 16 | 17 | 14 | 19 | 18 | 20 | 22 | 23 | 21 | 9 | 4 | 7 | 1 | 8 | 2 | 5 | 3 | 12 | 10 | 11 |
7 | 18 | 22 | 21 | 20 | 23 | 19 | 0 | 16 | 14 | 15 | 13 | 17 | 6 | 9 | 1 | 8 | 4 | 10 | 11 | 12 | 3 | 2 | 5 |
8 | 20 | 21 | 23 | 19 | 22 | 18 | 16 | 14 | 0 | 17 | 15 | 13 | 1 | 7 | 4 | 9 | 6 | 12 | 10 | 11 | 2 | 5 | 3 |
9 | 19 | 23 | 22 | 18 | 21 | 20 | 14 | 0 | 16 | 13 | 17 | 15 | 4 | 8 | 6 | 7 | 1 | 11 | 12 | 10 | 5 | 3 | 2 |
10 | 21 | 18 | 20 | 23 | 19 | 22 | 15 | 17 | 13 | 16 | 0 | 14 | 2 | 11 | 3 | 12 | 5 | 8 | 7 | 9 | 1 | 6 | 4 |
11 | 22 | 19 | 18 | 21 | 20 | 23 | 13 | 15 | 17 | 0 | 14 | 16 | 5 | 12 | 2 | 10 | 3 | 7 | 9 | 8 | 4 | 1 | 6 |
12 | 23 | 20 | 19 | 22 | 18 | 21 | 17 | 13 | 15 | 14 | 16 | 0 | 3 | 10 | 5 | 11 | 2 | 9 | 8 | 7 | 6 | 4 | 1 |
13 | 2 | 6 | 1 | 3 | 4 | 5 | 11 | 10 | 12 | 7 | 9 | 8 | 14 | 17 | 0 | 15 | 16 | 22 | 23 | 21 | 20 | 18 | 19 |
14 | 6 | 5 | 2 | 1 | 3 | 4 | 9 | 7 | 8 | 11 | 12 | 10 | 17 | 16 | 13 | 0 | 15 | 19 | 20 | 18 | 23 | 21 | 22 |
15 | 3 | 1 | 4 | 5 | 6 | 2 | 10 | 12 | 11 | 8 | 7 | 9 | 0 | 13 | 16 | 17 | 14 | 21 | 22 | 23 | 18 | 19 | 20 |
16 | 4 | 3 | 5 | 6 | 2 | 1 | 8 | 9 | 7 | 12 | 10 | 11 | 15 | 0 | 17 | 14 | 13 | 20 | 18 | 19 | 22 | 23 | 21 |
17 | 5 | 4 | 6 | 2 | 1 | 3 | 12 | 11 | 10 | 9 | 8 | 7 | 16 | 15 | 14 | 13 | 0 | 23 | 21 | 22 | 19 | 20 | 18 |
18 | 8 | 10 | 12 | 9 | 11 | 7 | 1 | 4 | 6 | 3 | 2 | 5 | 22 | 19 | 21 | 20 | 23 | 16 | 0 | 14 | 15 | 13 | 17 |
19 | 7 | 11 | 10 | 8 | 12 | 9 | 6 | 1 | 4 | 2 | 5 | 3 | 23 | 20 | 22 | 18 | 21 | 0 | 14 | 16 | 17 | 15 | 13 |
20 | 9 | 12 | 11 | 7 | 10 | 8 | 4 | 6 | 1 | 5 | 3 | 2 | 21 | 18 | 23 | 19 | 22 | 14 | 16 | 0 | 13 | 17 | 15 |
21 | 12 | 8 | 9 | 11 | 7 | 10 | 3 | 5 | 2 | 4 | 1 | 6 | 18 | 22 | 20 | 23 | 19 | 17 | 15 | 13 | 0 | 14 | 16 |
22 | 10 | 7 | 8 | 12 | 9 | 11 | 2 | 3 | 5 | 1 | 6 | 4 | 19 | 23 | 18 | 21 | 20 | 15 | 13 | 17 | 16 | 0 | 14 |
23 | 11 | 9 | 7 | 10 | 8 | 12 | 5 | 2 | 3 | 6 | 4 | 1 | 20 | 21 | 19 | 22 | 18 | 13 | 17 | 15 | 14 | 16 | 0 |
Centre: 0
Centrum: 0
Nucleus: 0
Left Nucleus: 0 17 20 22
Middle Nucleus: 0 14 16
Right Nucleus: 0 14 16
1 Element of order 1: 0
9 Elements of order 2: 2 4 7 12 17 20 21 22 23
2 Elements of order 3: 14 16
12 Elements of order 6: 1 3 5 6 8 9 10 11 13 15 18 19
Commutator Subloop: 0 14 16 21 22 23
Associator Subloop: 0 14 16 21 22 23
1 Conjugacy Class of size 1:
1 Conjugacy Class of size 2:
1 Conjugacy Class of size 3:
3 Conjugacy Classes of size 6:
Automorphic Inverse Property: FAILS. (1-1)(11-1) neq (1*11)-1
Al Property: FAILS. The left inner mapping L1,1 = (2,7)(3,8)(5,9)(10,11,12)(13,19)(15,18)(17,20)(21,23,22) is not an automorphism. L1,1(1*10) neq L1,1(1)*L1,1(10)
Ar Property: HOLDS (i.e. every right inner mapping Ra,b is an automorphism)
Right (Left, Full) Mult Group Orders: 96 (69984, 839808)