Group 16.1.2.8 of order 16


0123456789101112131415
1250367491381015121114
2561074313129814151011
3014725610811141391512
4307612511101415981213
5672143012151391114810
6745230115141213101198
7436501214111512810139
8101191314151265741230
9810131211141576432501
1011148915121352670143
1114151081213921563074
1213915148101134016725
1398121510111447305612
1415121110139810254367
1512131411981003127456

Centre:   0   6

Centrum:   0   6

Nucleus:   0   1   2   3   4   5   6   7   8   9   10   11   12   13   14   15

Left Nucleus:   0   1   2   3   4   5   6   7   8   9   10   11   12   13   14   15

Middle Nucleus:   0   1   2   3   4   5   6   7   8   9   10   11   12   13   14   15

Right Nucleus:   0   1   2   3   4   5   6   7   8   9   10   11   12   13   14   15


Comm(L):   This graph has as its 7 vertices the nontrivial cosets of the centre. Edges represent non-commuting cosets. Here we print (in reverse video) the complementary graph, in which edges represent commuting cosets.


1 Element of order 1:   0

1 Element of order 2:   6

10 Elements of order 4:   2   4   8   9   10   11   12   13   14   15

4 Elements of order 8:   1   3   5   7

Commutator Subloop:   0   2   4   6

Associator Subloop:   0

2 Conjugacy Classes of size 1:

3 Conjugacy Classes of size 2:

2 Conjugacy Classes of size 4:

Automorphic Inverse Property:   FAILS.   (1-1)(9-1) neq (1*9)-1

Al Property:   HOLDS (i.e. every left inner mapping La,b is an automorphism)

Ar Property:   HOLDS (i.e. every right inner mapping Ra,b is an automorphism)

Right (Left, Full) Mult Group Orders:   16 (16, 128)


/ revised October, 2001