0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | 24 | 25 | 26 |
1 | 2 | 0 | 4 | 5 | 3 | 10 | 8 | 9 | 7 | 11 | 6 | 13 | 14 | 12 | 17 | 15 | 16 | 20 | 18 | 19 | 22 | 23 | 21 | 26 | 24 | 25 |
2 | 0 | 1 | 5 | 3 | 4 | 11 | 9 | 7 | 8 | 6 | 10 | 14 | 12 | 13 | 16 | 17 | 15 | 19 | 20 | 18 | 23 | 21 | 22 | 25 | 26 | 24 |
3 | 4 | 5 | 6 | 10 | 11 | 17 | 1 | 2 | 0 | 16 | 15 | 8 | 9 | 7 | 18 | 19 | 20 | 26 | 24 | 25 | 13 | 14 | 12 | 22 | 21 | 23 |
4 | 5 | 3 | 10 | 11 | 6 | 16 | 2 | 0 | 1 | 15 | 17 | 9 | 7 | 8 | 20 | 18 | 19 | 25 | 26 | 24 | 14 | 12 | 13 | 23 | 22 | 21 |
5 | 3 | 4 | 11 | 6 | 10 | 15 | 0 | 1 | 2 | 17 | 16 | 7 | 8 | 9 | 19 | 20 | 18 | 24 | 25 | 26 | 12 | 13 | 14 | 21 | 23 | 22 |
6 | 10 | 11 | 17 | 16 | 15 | 20 | 4 | 5 | 3 | 19 | 18 | 2 | 0 | 1 | 26 | 24 | 25 | 23 | 22 | 21 | 9 | 7 | 8 | 14 | 13 | 12 |
7 | 8 | 9 | 1 | 2 | 0 | 4 | 12 | 13 | 14 | 5 | 3 | 21 | 22 | 23 | 6 | 11 | 10 | 17 | 15 | 16 | 24 | 26 | 25 | 18 | 19 | 20 |
8 | 9 | 7 | 2 | 0 | 1 | 5 | 13 | 14 | 12 | 3 | 4 | 22 | 23 | 21 | 10 | 6 | 11 | 16 | 17 | 15 | 26 | 25 | 24 | 20 | 18 | 19 |
9 | 7 | 8 | 0 | 1 | 2 | 3 | 14 | 12 | 13 | 4 | 5 | 23 | 21 | 22 | 11 | 10 | 6 | 15 | 16 | 17 | 25 | 24 | 26 | 19 | 20 | 18 |
10 | 11 | 6 | 16 | 15 | 17 | 19 | 5 | 3 | 4 | 18 | 20 | 0 | 1 | 2 | 25 | 26 | 24 | 21 | 23 | 22 | 7 | 8 | 9 | 12 | 14 | 13 |
11 | 6 | 10 | 15 | 17 | 16 | 18 | 3 | 4 | 5 | 20 | 19 | 1 | 2 | 0 | 24 | 25 | 26 | 22 | 21 | 23 | 8 | 9 | 7 | 13 | 12 | 14 |
12 | 13 | 14 | 8 | 9 | 7 | 2 | 21 | 22 | 23 | 0 | 1 | 24 | 26 | 25 | 4 | 3 | 5 | 10 | 6 | 11 | 18 | 20 | 19 | 17 | 15 | 16 |
13 | 14 | 12 | 9 | 7 | 8 | 0 | 22 | 23 | 21 | 1 | 2 | 26 | 25 | 24 | 5 | 4 | 3 | 11 | 10 | 6 | 20 | 19 | 18 | 16 | 17 | 15 |
14 | 12 | 13 | 7 | 8 | 9 | 1 | 23 | 21 | 22 | 2 | 0 | 25 | 24 | 26 | 3 | 5 | 4 | 6 | 11 | 10 | 19 | 18 | 20 | 15 | 16 | 17 |
15 | 17 | 16 | 18 | 20 | 19 | 26 | 6 | 10 | 11 | 25 | 24 | 4 | 5 | 3 | 22 | 21 | 23 | 14 | 13 | 12 | 2 | 0 | 1 | 9 | 8 | 7 |
16 | 15 | 17 | 19 | 18 | 20 | 24 | 11 | 6 | 10 | 26 | 25 | 3 | 4 | 5 | 21 | 23 | 22 | 13 | 12 | 14 | 1 | 2 | 0 | 8 | 7 | 9 |
17 | 16 | 15 | 20 | 19 | 18 | 25 | 10 | 11 | 6 | 24 | 26 | 5 | 3 | 4 | 23 | 22 | 21 | 12 | 14 | 13 | 0 | 1 | 2 | 7 | 9 | 8 |
18 | 20 | 19 | 26 | 25 | 24 | 23 | 17 | 16 | 15 | 21 | 22 | 10 | 11 | 6 | 14 | 13 | 12 | 7 | 9 | 8 | 5 | 3 | 4 | 0 | 2 | 1 |
19 | 18 | 20 | 24 | 26 | 25 | 22 | 15 | 17 | 16 | 23 | 21 | 6 | 10 | 11 | 13 | 12 | 14 | 9 | 8 | 7 | 4 | 5 | 3 | 2 | 1 | 0 |
20 | 19 | 18 | 25 | 24 | 26 | 21 | 16 | 15 | 17 | 22 | 23 | 11 | 6 | 10 | 12 | 14 | 13 | 8 | 7 | 9 | 3 | 4 | 5 | 1 | 0 | 2 |
21 | 22 | 23 | 13 | 14 | 12 | 9 | 24 | 26 | 25 | 7 | 8 | 18 | 20 | 19 | 2 | 1 | 0 | 5 | 4 | 3 | 17 | 16 | 15 | 10 | 6 | 11 |
22 | 23 | 21 | 14 | 12 | 13 | 7 | 26 | 25 | 24 | 8 | 9 | 20 | 19 | 18 | 0 | 2 | 1 | 3 | 5 | 4 | 16 | 15 | 17 | 11 | 10 | 6 |
23 | 21 | 22 | 12 | 13 | 14 | 8 | 25 | 24 | 26 | 9 | 7 | 19 | 18 | 20 | 1 | 0 | 2 | 4 | 3 | 5 | 15 | 17 | 16 | 6 | 11 | 10 |
24 | 26 | 25 | 22 | 23 | 21 | 14 | 18 | 20 | 19 | 12 | 13 | 17 | 16 | 15 | 9 | 8 | 7 | 0 | 2 | 1 | 10 | 11 | 6 | 5 | 4 | 3 |
25 | 24 | 26 | 21 | 22 | 23 | 13 | 19 | 18 | 20 | 14 | 12 | 15 | 17 | 16 | 8 | 7 | 9 | 2 | 1 | 0 | 6 | 10 | 11 | 4 | 3 | 5 |
26 | 25 | 24 | 23 | 21 | 22 | 12 | 20 | 19 | 18 | 13 | 14 | 16 | 15 | 17 | 7 | 9 | 8 | 1 | 0 | 2 | 11 | 6 | 10 | 3 | 5 | 4 |
Centre: 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26
Centrum: 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26
Nucleus: 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26
Left Nucleus: 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26
Middle Nucleus: 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26
Right Nucleus: 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26
1 Element of order 1: 0
8 Elements of order 3: 1 2 15 16 17 21 22 23
18 Elements of order 9: 3 4 5 6 7 8 9 10 11 12 13 14 18 19 20 24 25 26
Commutator Subloop: 0
Associator Subloop: 0
27 Conjugacy Classes of size 1:
Automorphic Inverse Property: HOLDS
Al Property: HOLDS (i.e. every left inner mapping La,b is an automorphism)
Ar Property: HOLDS (i.e. every right inner mapping Ra,b is an automorphism)
Right (Left, Full) Mult Group Orders: 27 (27, 27)