Right Bol Loop 15.10.1.0 of order 15


01234567891011121314
12047121139145131068
20161135810479131412
35786910110142141213
46119141082113127530
57312101141314860219
61141013891227114053
73511841261301410921
81210011413532964117
91413152704121136810
10812297114611134305
11461312014107385192
12108142130956317411
13914731241150128106
14139506311210281174

Centre:   0

Centrum:   0

Nucleus:   0

Left Nucleus:   0   6   7   9   12

Middle Nucleus:   0

Right Nucleus:   0

1 Element of order 1:   0

10 Elements of order 3:   1   2   3   4   5   8   10   11   13   14

4 Elements of order 5:   6   7   9   12

Commutator Subloop:   0   6   7   9   12

Associator Subloop:   0   6   7   9   12

1 Conjugacy Class of size 1:

1 Conjugacy Class of size 4:

2 Conjugacy Classes of size 5:

Automorphic Inverse Property:   FAILS.   (1-1)(4-1) neq (1*4)-1

Al Property:   FAILS. The left inner mapping L1,1 = (3,10,14,11)(4,5,8,13)(6,12)(7,9) is not an automorphism.   L1,1(1*4) neq L1,1(1)*L1,1(4)

Ar Property:   FAILS. The right inner mapping R1,3 = (1,3,11,10,14)(2,13,8,4,5) is not an automorphism.   R1,3(1*1) neq R1,3(1)*R1,3(1)

Right (Left, Full) Mult Group Orders:   75 (6000, 6000)


/ revised November, 2001