0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 |
1 | 2 | 0 | 4 | 7 | 12 | 11 | 3 | 9 | 14 | 5 | 13 | 10 | 6 | 8 |
2 | 0 | 1 | 6 | 11 | 3 | 5 | 8 | 10 | 4 | 7 | 9 | 13 | 14 | 12 |
3 | 5 | 7 | 8 | 6 | 9 | 10 | 11 | 0 | 1 | 4 | 2 | 14 | 12 | 13 |
4 | 6 | 11 | 9 | 14 | 10 | 8 | 2 | 1 | 13 | 12 | 7 | 5 | 3 | 0 |
5 | 7 | 3 | 12 | 10 | 11 | 4 | 13 | 14 | 8 | 6 | 0 | 2 | 1 | 9 |
6 | 11 | 4 | 10 | 13 | 8 | 9 | 12 | 2 | 7 | 1 | 14 | 0 | 5 | 3 |
7 | 3 | 5 | 11 | 8 | 4 | 12 | 6 | 13 | 0 | 14 | 10 | 9 | 2 | 1 |
8 | 12 | 10 | 0 | 1 | 14 | 13 | 5 | 3 | 2 | 9 | 6 | 4 | 11 | 7 |
9 | 14 | 13 | 1 | 5 | 2 | 7 | 0 | 4 | 12 | 11 | 3 | 6 | 8 | 10 |
10 | 8 | 12 | 2 | 9 | 7 | 1 | 14 | 6 | 11 | 13 | 4 | 3 | 0 | 5 |
11 | 4 | 6 | 13 | 12 | 0 | 14 | 10 | 7 | 3 | 8 | 5 | 1 | 9 | 2 |
12 | 10 | 8 | 14 | 2 | 13 | 0 | 9 | 5 | 6 | 3 | 1 | 7 | 4 | 11 |
13 | 9 | 14 | 7 | 3 | 1 | 2 | 4 | 11 | 5 | 0 | 12 | 8 | 10 | 6 |
14 | 13 | 9 | 5 | 0 | 6 | 3 | 1 | 12 | 10 | 2 | 8 | 11 | 7 | 4 |
Centre: 0
Centrum: 0
Nucleus: 0
Left Nucleus: 0 6 7 9 12
Middle Nucleus: 0
Right Nucleus: 0
1 Element of order 1: 0
10 Elements of order 3: 1 2 3 4 5 8 10 11 13 14
4 Elements of order 5: 6 7 9 12
Commutator Subloop: 0 6 7 9 12
Associator Subloop: 0 6 7 9 12
1 Conjugacy Class of size 1:
1 Conjugacy Class of size 4:
2 Conjugacy Classes of size 5:
Automorphic Inverse Property: FAILS. (1-1)(4-1) neq (1*4)-1
Al Property: FAILS. The left inner mapping L1,1 = (3,10,14,11)(4,5,8,13)(6,12)(7,9) is not an automorphism. L1,1(1*4) neq L1,1(1)*L1,1(4)
Ar Property: FAILS. The right inner mapping R1,3 = (1,3,11,10,14)(2,13,8,4,5) is not an automorphism. R1,3(1*1) neq R1,3(1)*R1,3(1)
Right (Left, Full) Mult Group Orders: 75 (6000, 6000)