0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 |
1 | 2 | 0 | 4 | 10 | 14 | 11 | 8 | 13 | 5 | 3 | 12 | 6 | 7 | 9 |
2 | 0 | 1 | 5 | 8 | 12 | 4 | 9 | 6 | 11 | 13 | 7 | 3 | 14 | 10 |
3 | 4 | 6 | 7 | 11 | 9 | 13 | 0 | 10 | 14 | 12 | 1 | 8 | 2 | 5 |
4 | 6 | 3 | 8 | 13 | 7 | 10 | 1 | 11 | 0 | 5 | 14 | 9 | 12 | 2 |
5 | 11 | 12 | 9 | 1 | 8 | 3 | 2 | 0 | 6 | 14 | 4 | 7 | 10 | 13 |
6 | 3 | 4 | 13 | 5 | 2 | 14 | 11 | 12 | 7 | 8 | 9 | 10 | 1 | 0 |
7 | 14 | 9 | 0 | 6 | 11 | 8 | 3 | 4 | 10 | 2 | 13 | 1 | 5 | 12 |
8 | 13 | 10 | 1 | 14 | 0 | 12 | 4 | 5 | 2 | 9 | 6 | 11 | 3 | 7 |
9 | 7 | 14 | 2 | 0 | 10 | 1 | 5 | 3 | 12 | 6 | 8 | 13 | 4 | 11 |
10 | 8 | 13 | 12 | 7 | 3 | 2 | 14 | 9 | 1 | 11 | 0 | 5 | 6 | 4 |
11 | 12 | 5 | 6 | 2 | 4 | 9 | 13 | 7 | 3 | 0 | 10 | 14 | 8 | 1 |
12 | 5 | 11 | 14 | 9 | 6 | 7 | 10 | 2 | 13 | 1 | 3 | 4 | 0 | 8 |
13 | 10 | 8 | 11 | 12 | 1 | 5 | 6 | 14 | 4 | 7 | 2 | 0 | 9 | 3 |
14 | 9 | 7 | 10 | 3 | 13 | 0 | 12 | 1 | 8 | 4 | 5 | 2 | 11 | 6 |
Centre: 0
Centrum: 0
Nucleus: 0
Left Nucleus: 0 4 9 12 13
Middle Nucleus: 0
Right Nucleus: 0
1 Element of order 1: 0
10 Elements of order 3: 1 2 3 5 6 7 8 10 11 14
4 Elements of order 5: 4 9 12 13
Commutator Subloop: 0 4 9 12 13
Associator Subloop: 0 4 9 12 13
1 Conjugacy Class of size 1:
1 Conjugacy Class of size 4:
2 Conjugacy Classes of size 5:
Automorphic Inverse Property: HOLDS
Al Property: FAILS. The left inner mapping L1,1 = (3,14)(4,12,9,13)(5,7,10,6)(8,11) is not an automorphism. L1,1(1*3) neq L1,1(1)*L1,1(3)
Ar Property: HOLDS (i.e. every right inner mapping Ra,b is an automorphism)
Right (Left, Full) Mult Group Orders: 75 (6000, 6000)