Right Bol Loop 15.10.1.1 of order 15


01234567891011121314
12041014118135312679
20158124961113731410
34671191301014121825
46381371011105149122
51112918320614471013
63413521411127891010
71490611834102131512
81310114012452961137
97142010153126813411
10813127321491110564
11125624913730101481
12511149671021313408
13108111215614472093
14971031301218452116

Centre:   0

Centrum:   0

Nucleus:   0

Left Nucleus:   0   4   9   12   13

Middle Nucleus:   0

Right Nucleus:   0

1 Element of order 1:   0

10 Elements of order 3:   1   2   3   5   6   7   8   10   11   14

4 Elements of order 5:   4   9   12   13

Commutator Subloop:   0   4   9   12   13

Associator Subloop:   0   4   9   12   13

1 Conjugacy Class of size 1:

1 Conjugacy Class of size 4:

2 Conjugacy Classes of size 5:

Automorphic Inverse Property:   HOLDS

Al Property:   FAILS. The left inner mapping L1,1 = (3,14)(4,12,9,13)(5,7,10,6)(8,11) is not an automorphism.   L1,1(1*3) neq L1,1(1)*L1,1(3)

Ar Property:   HOLDS (i.e. every right inner mapping Ra,b is an automorphism)

Right (Left, Full) Mult Group Orders:   75 (6000, 6000)


/ revised November, 2001