Group 16.1.16.0 of order 16


0123456789101112131415
1131510912141102634587
2151413101112096513748
3101390141512111248675
4910011151314123187256
5121114159010137862413
6141215130119105721834
7110121410913158456321
8091112131015144375162
9261375841013011151214
1065218743131590141112
1131486257091214101513
1243872165110141591310
1357624831151410912011
1484751326121115130109
1578563412141213101190

Centre:   0   1   2   3   4   5   6   7   8   9   10   11   12   13   14   15

Centrum:   0   1   2   3   4   5   6   7   8   9   10   11   12   13   14   15

Nucleus:   0   1   2   3   4   5   6   7   8   9   10   11   12   13   14   15

Left Nucleus:   0   1   2   3   4   5   6   7   8   9   10   11   12   13   14   15

Middle Nucleus:   0   1   2   3   4   5   6   7   8   9   10   11   12   13   14   15

Right Nucleus:   0   1   2   3   4   5   6   7   8   9   10   11   12   13   14   15

1 Element of order 1:   0

1 Element of order 2:   15

2 Elements of order 4:   10   12

4 Elements of order 8:   9   11   13   14

8 Elements of order 16:   1   2   3   4   5   6   7   8

Commutator Subloop:   0

Associator Subloop:   0

16 Conjugacy Classes of size 1:

Automorphic Inverse Property:   HOLDS

Al Property:   HOLDS (i.e. every left inner mapping La,b is an automorphism)

Ar Property:   HOLDS (i.e. every right inner mapping Ra,b is an automorphism)

Right (Left, Full) Mult Group Orders:   16 (16, 16)


/ revised October, 2001