0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 |
1 | 13 | 15 | 10 | 9 | 12 | 14 | 11 | 0 | 2 | 6 | 3 | 4 | 5 | 8 | 7 |
2 | 15 | 14 | 13 | 10 | 11 | 12 | 0 | 9 | 6 | 5 | 1 | 3 | 7 | 4 | 8 |
3 | 10 | 13 | 9 | 0 | 14 | 15 | 12 | 11 | 1 | 2 | 4 | 8 | 6 | 7 | 5 |
4 | 9 | 10 | 0 | 11 | 15 | 13 | 14 | 12 | 3 | 1 | 8 | 7 | 2 | 5 | 6 |
5 | 12 | 11 | 14 | 15 | 9 | 0 | 10 | 13 | 7 | 8 | 6 | 2 | 4 | 1 | 3 |
6 | 14 | 12 | 15 | 13 | 0 | 11 | 9 | 10 | 5 | 7 | 2 | 1 | 8 | 3 | 4 |
7 | 11 | 0 | 12 | 14 | 10 | 9 | 13 | 15 | 8 | 4 | 5 | 6 | 3 | 2 | 1 |
8 | 0 | 9 | 11 | 12 | 13 | 10 | 15 | 14 | 4 | 3 | 7 | 5 | 1 | 6 | 2 |
9 | 2 | 6 | 1 | 3 | 7 | 5 | 8 | 4 | 10 | 13 | 0 | 11 | 15 | 12 | 14 |
10 | 6 | 5 | 2 | 1 | 8 | 7 | 4 | 3 | 13 | 15 | 9 | 0 | 14 | 11 | 12 |
11 | 3 | 1 | 4 | 8 | 6 | 2 | 5 | 7 | 0 | 9 | 12 | 14 | 10 | 15 | 13 |
12 | 4 | 3 | 8 | 7 | 2 | 1 | 6 | 5 | 11 | 0 | 14 | 15 | 9 | 13 | 10 |
13 | 5 | 7 | 6 | 2 | 4 | 8 | 3 | 1 | 15 | 14 | 10 | 9 | 12 | 0 | 11 |
14 | 8 | 4 | 7 | 5 | 1 | 3 | 2 | 6 | 12 | 11 | 15 | 13 | 0 | 10 | 9 |
15 | 7 | 8 | 5 | 6 | 3 | 4 | 1 | 2 | 14 | 12 | 13 | 10 | 11 | 9 | 0 |
Centre: 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
Centrum: 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
Nucleus: 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
Left Nucleus: 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
Middle Nucleus: 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
Right Nucleus: 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
1 Element of order 1: 0
1 Element of order 2: 15
2 Elements of order 4: 10 12
4 Elements of order 8: 9 11 13 14
8 Elements of order 16: 1 2 3 4 5 6 7 8
Commutator Subloop: 0
Associator Subloop: 0
16 Conjugacy Classes of size 1:
Automorphic Inverse Property: HOLDS
Al Property: HOLDS (i.e. every left inner mapping La,b is an automorphism)
Ar Property: HOLDS (i.e. every right inner mapping Ra,b is an automorphism)
Right (Left, Full) Mult Group Orders: 16 (16, 16)