Group 18.9.1.0 of order 18


01234567891011121314151617
10171213161110141576348952
21201716111314151095167843
31712011131615101484259761
41514100121716111338592176
51410151701213161129671384
61015141217011131617483295
71116131415100121761834529
81613111014151701243925617
91311161510141217052716438
10654897132110141213161715
11798321645010131412171516
12231645978141317161510110
13987132564121416151701011
14546789213131215171611010
15465978321161710011131214
16879213456171511100121413
17312564897151601110141312

Centre:   0

Centrum:   0

Nucleus:   0   1   2   3   4   5   6   7   8   9   10   11   12   13   14   15   16   17

Left Nucleus:   0   1   2   3   4   5   6   7   8   9   10   11   12   13   14   15   16   17

Middle Nucleus:   0   1   2   3   4   5   6   7   8   9   10   11   12   13   14   15   16   17

Right Nucleus:   0   1   2   3   4   5   6   7   8   9   10   11   12   13   14   15   16   17

1 Element of order 1:   0

9 Elements of order 2:   1   2   3   4   5   6   7   8   9

8 Elements of order 3:   10   11   12   13   14   15   16   17

Commutator Subloop:   0   10   11   12   13   14   15   16   17

Associator Subloop:   0

1 Conjugacy Class of size 1:

4 Conjugacy Classes of size 2:

1 Conjugacy Class of size 9:

Automorphic Inverse Property:   FAILS.   (1-1)(3-1) neq (1*3)-1

Al Property:   HOLDS (i.e. every left inner mapping La,b is an automorphism)

Ar Property:   HOLDS (i.e. every right inner mapping Ra,b is an automorphism)

Right (Left, Full) Mult Group Orders:   18 (18, 324)


/ revised November, 2001