Right Bol Loop 21.14.1.1 of order 21


01234567891011121314151617181920
14026351011121378920161714191518
20351641112137891017191516201814
32560418910111213716181915142017
46105231378910111218171420151619
53642101213789101115201819171416
65413029101112137819142018161715
79121011813161817191415204201536
81013111297191415201618170532461
91171213108201618171914153465012
10128137119171914152016186014325
11139781210152016181719141320654
12710891311181719141520162653140
13811910712141520161817195146203
14191520171618403612581213710119
15142016191817254036113101112897
16201817151914036125491378111210
17181914161520125403612910117813
18161719201415540361271112139108
19171415182016361254010789121311
20151618141719612540311891013712

Centre:   0

Centrum:   0

Nucleus:   0

Left Nucleus:   0   1   2   3   4   5   6

Middle Nucleus:   0

Right Nucleus:   0

1 Element of order 1:   0

14 Elements of order 3:   7   8   9   10   11   12   13   14   15   16   17   18   19   20

6 Elements of order 7:   1   2   3   4   5   6

Commutator Subloop:   0   1   2   3   4   5   6

Associator Subloop:   0   1   2   3   4   5   6

1 Conjugacy Class of size 1:

1 Conjugacy Class of size 6:

2 Conjugacy Classes of size 7:

Automorphic Inverse Property:   HOLDS

Al Property:   FAILS. The left inner mapping L1,7 = (7,11,8,12,9,13,10)(14,16,19,20,17,15,18) is not an automorphism.   L1,7(7*7) neq L1,7(7)*L1,7(7)

Ar Property:   HOLDS (i.e. every right inner mapping Ra,b is an automorphism)

Right (Left, Full) Mult Group Orders:   147 (12348, 37044)


/ revised November, 2001