0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 |
1 | 2 | 5 | 0 | 3 | 4 | 7 | 11 | 6 | 8 | 9 | 10 | 13 | 17 | 12 | 14 | 15 | 16 | 19 | 20 | 21 | 22 | 23 | 18 |
2 | 5 | 4 | 1 | 0 | 3 | 11 | 10 | 7 | 6 | 8 | 9 | 17 | 16 | 13 | 12 | 14 | 15 | 20 | 21 | 22 | 23 | 18 | 19 |
3 | 0 | 1 | 4 | 5 | 2 | 8 | 6 | 9 | 10 | 11 | 7 | 14 | 12 | 15 | 16 | 17 | 13 | 23 | 18 | 19 | 20 | 21 | 22 |
4 | 3 | 0 | 5 | 2 | 1 | 9 | 8 | 10 | 11 | 7 | 6 | 15 | 14 | 16 | 17 | 13 | 12 | 22 | 23 | 18 | 19 | 20 | 21 |
5 | 4 | 3 | 2 | 1 | 0 | 10 | 9 | 11 | 7 | 6 | 8 | 16 | 15 | 17 | 13 | 12 | 14 | 21 | 22 | 23 | 18 | 19 | 20 |
6 | 7 | 11 | 8 | 9 | 10 | 0 | 1 | 3 | 4 | 5 | 2 | 18 | 19 | 23 | 22 | 21 | 20 | 12 | 13 | 17 | 16 | 15 | 14 |
7 | 11 | 10 | 6 | 8 | 9 | 1 | 2 | 0 | 3 | 4 | 5 | 19 | 20 | 18 | 23 | 22 | 21 | 13 | 17 | 16 | 15 | 14 | 12 |
8 | 6 | 7 | 9 | 10 | 11 | 3 | 0 | 4 | 5 | 2 | 1 | 23 | 18 | 22 | 21 | 20 | 19 | 14 | 12 | 13 | 17 | 16 | 15 |
9 | 8 | 6 | 10 | 11 | 7 | 4 | 3 | 5 | 2 | 1 | 0 | 22 | 23 | 21 | 20 | 19 | 18 | 15 | 14 | 12 | 13 | 17 | 16 |
10 | 9 | 8 | 11 | 7 | 6 | 5 | 4 | 2 | 1 | 0 | 3 | 21 | 22 | 20 | 19 | 18 | 23 | 16 | 15 | 14 | 12 | 13 | 17 |
11 | 10 | 9 | 7 | 6 | 8 | 2 | 5 | 1 | 0 | 3 | 4 | 20 | 21 | 19 | 18 | 23 | 22 | 17 | 16 | 15 | 14 | 12 | 13 |
12 | 13 | 17 | 14 | 15 | 16 | 18 | 19 | 23 | 22 | 21 | 20 | 4 | 3 | 5 | 2 | 1 | 0 | 9 | 8 | 6 | 7 | 11 | 10 |
13 | 17 | 16 | 12 | 14 | 15 | 19 | 20 | 18 | 23 | 22 | 21 | 3 | 0 | 4 | 5 | 2 | 1 | 8 | 6 | 7 | 11 | 10 | 9 |
14 | 12 | 13 | 15 | 16 | 17 | 23 | 18 | 22 | 21 | 20 | 19 | 5 | 4 | 2 | 1 | 0 | 3 | 10 | 9 | 8 | 6 | 7 | 11 |
15 | 14 | 12 | 16 | 17 | 13 | 22 | 23 | 21 | 20 | 19 | 18 | 2 | 5 | 1 | 0 | 3 | 4 | 11 | 10 | 9 | 8 | 6 | 7 |
16 | 15 | 14 | 17 | 13 | 12 | 21 | 22 | 20 | 19 | 18 | 23 | 1 | 2 | 0 | 3 | 4 | 5 | 7 | 11 | 10 | 9 | 8 | 6 |
17 | 16 | 15 | 13 | 12 | 14 | 20 | 21 | 19 | 18 | 23 | 22 | 0 | 1 | 3 | 4 | 5 | 2 | 6 | 7 | 11 | 10 | 9 | 8 |
18 | 19 | 20 | 23 | 22 | 21 | 12 | 13 | 14 | 15 | 16 | 17 | 9 | 8 | 10 | 11 | 7 | 6 | 4 | 3 | 0 | 1 | 2 | 5 |
19 | 20 | 21 | 18 | 23 | 22 | 13 | 17 | 12 | 14 | 15 | 16 | 8 | 6 | 9 | 10 | 11 | 7 | 3 | 0 | 1 | 2 | 5 | 4 |
20 | 21 | 22 | 19 | 18 | 23 | 17 | 16 | 13 | 12 | 14 | 15 | 6 | 7 | 8 | 9 | 10 | 11 | 0 | 1 | 2 | 5 | 4 | 3 |
21 | 22 | 23 | 20 | 19 | 18 | 16 | 15 | 17 | 13 | 12 | 14 | 7 | 11 | 6 | 8 | 9 | 10 | 1 | 2 | 5 | 4 | 3 | 0 |
22 | 23 | 18 | 21 | 20 | 19 | 15 | 14 | 16 | 17 | 13 | 12 | 11 | 10 | 7 | 6 | 8 | 9 | 2 | 5 | 4 | 3 | 0 | 1 |
23 | 18 | 19 | 22 | 21 | 20 | 14 | 12 | 15 | 16 | 17 | 13 | 10 | 9 | 11 | 7 | 6 | 8 | 5 | 4 | 3 | 0 | 1 | 2 |
Centre: 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23
Centrum: 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23
Nucleus: 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23
Left Nucleus: 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23
Middle Nucleus: 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23
Right Nucleus: 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23
1 Element of order 1: 0
7 Elements of order 2: 5 6 10 13 15 19 22
2 Elements of order 3: 2 4
14 Elements of order 6: 1 3 7 8 9 11 12 14 16 17 18 20 21 23
Commutator Subloop: 0
Associator Subloop: 0
24 Conjugacy Classes of size 1:
Automorphic Inverse Property: HOLDS
Al Property: HOLDS (i.e. every left inner mapping La,b is an automorphism)
Ar Property: HOLDS (i.e. every right inner mapping Ra,b is an automorphism)
Right (Left, Full) Mult Group Orders: 24 (24, 24)