0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | 24 | 25 | 26 |
1 | 2 | 0 | 4 | 11 | 6 | 15 | 18 | 17 | 16 | 8 | 3 | 14 | 7 | 19 | 5 | 20 | 10 | 13 | 12 | 9 | 22 | 26 | 24 | 25 | 23 | 21 |
2 | 0 | 1 | 6 | 15 | 19 | 12 | 17 | 16 | 18 | 9 | 5 | 3 | 8 | 4 | 14 | 13 | 20 | 10 | 11 | 7 | 26 | 21 | 25 | 23 | 24 | 22 |
3 | 5 | 6 | 7 | 8 | 18 | 9 | 22 | 1 | 21 | 0 | 13 | 20 | 2 | 17 | 16 | 25 | 24 | 26 | 10 | 23 | 14 | 15 | 4 | 11 | 19 | 12 |
4 | 11 | 19 | 18 | 9 | 17 | 10 | 26 | 24 | 25 | 1 | 16 | 13 | 22 | 7 | 20 | 23 | 0 | 2 | 8 | 21 | 3 | 5 | 14 | 15 | 12 | 6 |
5 | 6 | 3 | 20 | 17 | 13 | 7 | 23 | 2 | 0 | 26 | 10 | 9 | 25 | 16 | 8 | 1 | 22 | 21 | 18 | 24 | 15 | 12 | 11 | 19 | 4 | 14 |
6 | 3 | 5 | 17 | 10 | 7 | 8 | 21 | 22 | 1 | 2 | 20 | 16 | 23 | 18 | 13 | 24 | 26 | 25 | 9 | 0 | 12 | 14 | 19 | 4 | 11 | 15 |
7 | 20 | 13 | 22 | 26 | 23 | 2 | 15 | 12 | 6 | 3 | 24 | 1 | 11 | 21 | 25 | 19 | 14 | 4 | 0 | 5 | 9 | 16 | 18 | 17 | 10 | 8 |
8 | 9 | 16 | 1 | 21 | 24 | 22 | 4 | 14 | 19 | 12 | 0 | 2 | 15 | 25 | 26 | 5 | 3 | 11 | 23 | 6 | 10 | 18 | 13 | 7 | 20 | 17 |
9 | 16 | 8 | 2 | 25 | 0 | 1 | 6 | 15 | 12 | 11 | 23 | 22 | 5 | 26 | 21 | 14 | 4 | 19 | 24 | 3 | 18 | 17 | 7 | 20 | 13 | 10 |
10 | 18 | 17 | 0 | 1 | 26 | 24 | 3 | 5 | 11 | 19 | 21 | 23 | 14 | 2 | 22 | 15 | 6 | 12 | 25 | 4 | 13 | 7 | 8 | 9 | 16 | 20 |
11 | 19 | 4 | 9 | 16 | 10 | 20 | 2 | 0 | 23 | 24 | 18 | 7 | 26 | 8 | 17 | 21 | 1 | 22 | 13 | 25 | 5 | 6 | 15 | 12 | 14 | 3 |
12 | 14 | 15 | 8 | 13 | 9 | 16 | 1 | 21 | 22 | 23 | 7 | 17 | 0 | 10 | 18 | 26 | 25 | 24 | 20 | 2 | 19 | 4 | 6 | 3 | 5 | 11 |
13 | 7 | 20 | 24 | 22 | 25 | 23 | 11 | 3 | 5 | 14 | 26 | 0 | 4 | 1 | 2 | 6 | 12 | 15 | 21 | 19 | 8 | 9 | 10 | 18 | 17 | 16 |
14 | 15 | 12 | 13 | 7 | 16 | 18 | 24 | 25 | 26 | 21 | 8 | 10 | 1 | 20 | 9 | 2 | 23 | 0 | 17 | 22 | 4 | 11 | 3 | 5 | 6 | 19 |
15 | 12 | 14 | 16 | 18 | 20 | 17 | 25 | 26 | 24 | 22 | 9 | 8 | 21 | 13 | 10 | 0 | 2 | 23 | 7 | 1 | 11 | 19 | 5 | 6 | 3 | 4 |
16 | 8 | 9 | 25 | 23 | 1 | 21 | 19 | 4 | 14 | 15 | 2 | 26 | 6 | 24 | 0 | 3 | 11 | 5 | 22 | 12 | 17 | 10 | 20 | 13 | 7 | 18 |
17 | 10 | 18 | 21 | 0 | 22 | 26 | 14 | 19 | 4 | 6 | 1 | 25 | 12 | 23 | 24 | 11 | 5 | 3 | 2 | 15 | 20 | 13 | 16 | 8 | 9 | 7 |
18 | 17 | 10 | 26 | 24 | 2 | 25 | 5 | 11 | 3 | 4 | 22 | 21 | 19 | 0 | 23 | 12 | 15 | 6 | 1 | 14 | 7 | 20 | 9 | 16 | 8 | 13 |
19 | 4 | 11 | 10 | 20 | 8 | 13 | 0 | 23 | 2 | 25 | 17 | 18 | 24 | 9 | 7 | 22 | 21 | 1 | 16 | 26 | 6 | 3 | 12 | 14 | 15 | 5 |
20 | 13 | 7 | 23 | 2 | 21 | 0 | 12 | 6 | 15 | 5 | 25 | 24 | 3 | 22 | 1 | 4 | 19 | 14 | 26 | 11 | 16 | 8 | 17 | 10 | 18 | 9 |
21 | 22 | 26 | 14 | 19 | 3 | 4 | 13 | 10 | 20 | 17 | 12 | 15 | 18 | 5 | 11 | 9 | 8 | 7 | 6 | 16 | 23 | 24 | 0 | 1 | 2 | 25 |
22 | 26 | 21 | 15 | 5 | 12 | 14 | 16 | 18 | 17 | 7 | 6 | 4 | 9 | 11 | 19 | 10 | 13 | 20 | 3 | 8 | 24 | 25 | 1 | 2 | 0 | 23 |
23 | 24 | 25 | 12 | 14 | 11 | 3 | 8 | 9 | 7 | 20 | 19 | 6 | 10 | 15 | 4 | 18 | 16 | 17 | 5 | 13 | 0 | 1 | 21 | 22 | 26 | 2 |
24 | 25 | 23 | 11 | 3 | 15 | 5 | 9 | 7 | 8 | 13 | 4 | 19 | 20 | 12 | 6 | 17 | 18 | 16 | 14 | 10 | 1 | 2 | 22 | 26 | 21 | 0 |
25 | 23 | 24 | 19 | 12 | 4 | 11 | 10 | 20 | 13 | 16 | 14 | 5 | 17 | 6 | 3 | 7 | 9 | 8 | 15 | 18 | 2 | 0 | 26 | 21 | 22 | 1 |
26 | 21 | 22 | 5 | 6 | 14 | 19 | 20 | 13 | 10 | 18 | 15 | 11 | 16 | 3 | 12 | 8 | 7 | 9 | 4 | 17 | 25 | 23 | 2 | 0 | 1 | 24 |
Centre: 0 22 25
Centrum: 0 22 25
Nucleus: 0 22 25
Left Nucleus: 0 4 5 9 12 13 17 22 25
Middle Nucleus: 0 22 25
Right Nucleus: 0 22 25
1 Element of order 1: 0
8 Elements of order 3: 1 2 21 22 23 24 25 26
18 Elements of order 9: 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
Commutator Subloop: 0 22 25
Associator Subloop: 0 22 25
3 Conjugacy Classes of size 1:
8 Conjugacy Classes of size 3:
Automorphic Inverse Property: FAILS. (1-1)(4-1) neq (1*4)-1
Al Property: HOLDS (i.e. every left inner mapping La,b is an automorphism)
Ar Property: HOLDS (i.e. every right inner mapping Ra,b is an automorphism)
Right (Left, Full) Mult Group Orders: 81 (243, 2187)