Right Bol Loop 24.15.4.1 of order 24


01234567891011121314151617181920212223
12503476981110131215141716231819202122
25410311810679171416121315222318192021
30145281161097141712161513192021222318
43052191071186151613171412202122231819
54321010911768161517131214212223181920
67118910013452181923222120121317161514
71110689104325191822232021141213171615
86791011320541232018212219131716151412
98610117451230222119202318171615141213
10981176542103212220191823161514121317
11109768235014202321181922151412131716
12131714151618192322212001345267111098
13171612141519182223202110432586711109
14121315161723201821221932054171110986
15141216171322211920231845123011109867
16151417131221222019182354210310986711
17161513121420232118192223501498671110
18192023222112131415161767891011012543
19202118232213121514171676981110301254
20212219182317141612131511810679430125
21222320191816151713121410911768543012
22231821201915161317141291071186254301
23181922212014171216151381161097125430

Centre:   0

Centrum:   0   5   6   12

Nucleus:   0   21

Left Nucleus:   0   5   6   10   12   16   18   21

Middle Nucleus:   0   2   4   19   21   23

Right Nucleus:   0   2   4   19   21   23

1 Element of order 1:   0

15 Elements of order 2:   5   6   7   8   10   12   13   14   16   18   19   20   21   22   23

2 Elements of order 3:   2   4

6 Elements of order 6:   1   3   9   11   15   17

Commutator Subloop:   0   2   4

Associator Subloop:   0   2   4

1 Conjugacy Class of size 1:

1 Conjugacy Class of size 2:

7 Conjugacy Classes of size 3:

Automorphic Inverse Property:   FAILS.   (1-1)(7-1) neq (1*7)-1

Al Property:   FAILS. The left inner mapping L1,1 = (6,9,11)(7,10,8)(12,15,17)(13,16,14) is not an automorphism.   L1,1(1*6) neq L1,1(1)*L1,1(6)

Ar Property:   HOLDS (i.e. every right inner mapping Ra,b is an automorphism)

Right (Left, Full) Mult Group Orders:   48 (648, 3888)


/ revised November, 2001