0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 |
1 | 0 | 3 | 2 | 5 | 4 | 7 | 6 | 10 | 11 | 8 | 9 |
2 | 4 | 5 | 1 | 3 | 0 | 8 | 11 | 9 | 6 | 7 | 10 |
3 | 5 | 4 | 0 | 2 | 1 | 11 | 8 | 7 | 10 | 9 | 6 |
4 | 2 | 1 | 5 | 0 | 3 | 10 | 9 | 11 | 7 | 6 | 8 |
5 | 3 | 0 | 4 | 1 | 2 | 9 | 10 | 6 | 8 | 11 | 7 |
6 | 7 | 9 | 11 | 10 | 8 | 0 | 1 | 5 | 2 | 4 | 3 |
7 | 6 | 10 | 8 | 9 | 11 | 1 | 0 | 3 | 4 | 2 | 5 |
8 | 10 | 6 | 7 | 11 | 9 | 2 | 3 | 0 | 5 | 1 | 4 |
9 | 11 | 8 | 10 | 7 | 6 | 5 | 4 | 2 | 0 | 3 | 1 |
10 | 8 | 11 | 9 | 6 | 7 | 4 | 5 | 1 | 3 | 0 | 2 |
11 | 9 | 7 | 6 | 8 | 10 | 3 | 2 | 4 | 1 | 5 | 0 |
Centre: 0
Centrum: 0
Nucleus: 0
Left Nucleus: 0
Middle Nucleus: 0
Right Nucleus: 0
1 Element of order 1: 0
9 Elements of order 2: 1 3 4 6 7 8 9 10 11
2 Elements of order 3: 2 5
Commutator Subloop: 0 2 5
Associator Subloop: 0 2 5
1 Conjugacy Class of size 1:
1 Conjugacy Class of size 2:
3 Conjugacy Classes of size 3:
Automorphic Inverse Property: FAILS. (1-1)(3-1) neq (1*3)-1
Al Property: FAILS. The left inner mapping L1,2 = (6,8,9)(7,11,10) is not an automorphism. L1,2(1*6) neq L1,2(1)*L1,2(6)
Ar Property: FAILS. The right inner mapping R1,2 = (6,9,8)(7,10,11) is not an automorphism. R1,2(1*6) neq R1,2(1)*R1,2(6)
Right (Left, Full) Mult Group Orders: 648 (648, 2592)