Right Bol Loop 20.15.1.0 of order 20


012345678910111213141516171819
140238956714171619181110131215
203417895616151817101912111413
324109567812191411161318151017
431026789518131015121714191611
578690312411141912171015181316
689754031219161714151213101118
795862403117181516131411121910
856971240315101318111619141712
967583124013121110191817161514
101614181213151719110849251637
111517131918161412105093817264
121816101415171911133905462718
131719151110181614129480736152
141018121617191113151536074829
151911171312101816148274605391
161210141819111315172617380945
171113191514121018167162549083
181412161011131517194728193506
191315111716141210186351928470

Centre:   0

Centrum:   0

Nucleus:   0

Left Nucleus:   0   9   16   17

Middle Nucleus:   0   1   2   3   4

Right Nucleus:   0   1   2   3   4

1 Element of order 1:   0

15 Elements of order 2:   5   6   7   8   9   10   11   12   13   14   15   16   17   18   19

4 Elements of order 5:   1   2   3   4

Commutator Subloop:   0   1   2   3   4

Associator Subloop:   0   1   2   3   4

1 Conjugacy Class of size 1:

2 Conjugacy Classes of size 2:

3 Conjugacy Classes of size 5:

Automorphic Inverse Property:   FAILS.   (1-1)(6-1) neq (1*6)-1

Al Property:   FAILS. The left inner mapping L5,1 = (10,18,16,14,12)(11,13,15,17,19) is not an automorphism.   L5,1(10*5) neq L5,1(10)*L5,1(5)

Ar Property:   HOLDS (i.e. every right inner mapping Ra,b is an automorphism)

Right (Left, Full) Mult Group Orders:   40 (2500, 5000)


/ revised November, 2001