0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 |
1 | 0 | 3 | 2 | 5 | 4 | 7 | 9 | 10 | 8 | 11 | 6 |
2 | 4 | 5 | 1 | 3 | 0 | 9 | 8 | 11 | 10 | 6 | 7 |
3 | 5 | 4 | 0 | 2 | 1 | 8 | 10 | 6 | 11 | 7 | 9 |
4 | 2 | 1 | 5 | 0 | 3 | 11 | 6 | 9 | 7 | 8 | 10 |
5 | 3 | 0 | 4 | 1 | 2 | 10 | 11 | 7 | 6 | 9 | 8 |
6 | 8 | 10 | 7 | 11 | 9 | 0 | 4 | 3 | 5 | 2 | 1 |
7 | 9 | 11 | 6 | 10 | 8 | 1 | 0 | 5 | 4 | 3 | 2 |
8 | 6 | 7 | 10 | 9 | 11 | 3 | 2 | 0 | 1 | 4 | 5 |
9 | 7 | 6 | 11 | 8 | 10 | 2 | 1 | 4 | 0 | 5 | 3 |
10 | 11 | 9 | 8 | 7 | 6 | 5 | 3 | 1 | 2 | 0 | 4 |
11 | 10 | 8 | 9 | 6 | 7 | 4 | 5 | 2 | 3 | 1 | 0 |
Centre: 0
Centrum: 0
Nucleus: 0
Left Nucleus: 0 3 9 11
Middle Nucleus: 0 2 5
Right Nucleus: 0 2 5
1 Element of order 1: 0
9 Elements of order 2: 1 3 4 6 7 8 9 10 11
2 Elements of order 3: 2 5
Commutator Subloop: 0 2 5
Associator Subloop: 0 2 5
1 Conjugacy Class of size 1:
1 Conjugacy Class of size 2:
3 Conjugacy Classes of size 3:
Automorphic Inverse Property: FAILS. (1-1)(3-1) neq (1*3)-1
Al Property: FAILS. The left inner mapping L1,1 = (6,9,10)(7,8,11) is not an automorphism. L1,1(6*1) neq L1,1(6)*L1,1(1)
Ar Property: HOLDS (i.e. every right inner mapping Ra,b is an automorphism)
Right (Left, Full) Mult Group Orders: 24 (324, 648)