Right Bol Loop 24.17.1.0 of order 24


01234567891011121314151617181920212223
11617141523132022019211868752124113109
21716151418022201321192397812153104116
31921013201523181416172286910411212157
42119130221418231517162079611310152128
52318202201719211614151312111096284731
61302119172315141822201613425910711812
71415161719220132023182142131181265910
81514171621201302218231931241075912611
90131921161814152320221724311261181075
10202223181421161719013151112578462913
11222018231519171621130141051287391624
12182322201316211917151405101169173842
13214312987611105015141716232122192018
14341210896751211150131921221623171820
15432111769812510141302119201718162322
16512789210111346182022231317141915210
17125876111102439232220180161521141913
18691110254312871162119132302215201417
19101196745123128222318201521016131714
20785123111210964211617142215230181319
21111069831254217201823221419131701615
22871254102111693191716152014181323021
23961011112345782171921018132014221516

Centre:   0

Centrum:   0

Nucleus:   0

Left Nucleus:   0   13   14   15

Middle Nucleus:   0   16   23

Right Nucleus:   0   16   23

1 Element of order 1:   0

17 Elements of order 2:   3   4   5   7   8   10   11   12   13   14   15   17   18   19   20   21   22

2 Elements of order 3:   16   23

4 Elements of order 6:   1   2   6   9

Commutator Subloop:   0   13   16   17   18   23

Associator Subloop:   0   13   16   17   18   23

1 Conjugacy Class of size 1:

1 Conjugacy Class of size 2:

1 Conjugacy Class of size 3:

3 Conjugacy Classes of size 6:

Automorphic Inverse Property:   FAILS.   (1-1)(3-1) neq (1*3)-1

Al Property:   FAILS. The left inner mapping L1,1 = (2,6,12)(3,4)(7,8)(10,11)(13,17,18)(14,15)(19,21)(20,22) is not an automorphism.   L1,1(1*2) neq L1,1(1)*L1,1(2)

Ar Property:   HOLDS (i.e. every right inner mapping Ra,b is an automorphism)

Right (Left, Full) Mult Group Orders:   96 (69984, 279936)


/ revised November, 2001