0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 |
1 | 2 | 0 | 4 | 6 | 8 | 3 | 10 | 9 | 5 | 11 | 7 | 13 | 14 | 12 | 19 | 20 | 15 | 23 | 17 | 22 | 18 | 16 | 21 |
2 | 0 | 1 | 6 | 3 | 9 | 4 | 11 | 5 | 8 | 7 | 10 | 14 | 12 | 13 | 17 | 22 | 19 | 21 | 15 | 16 | 23 | 20 | 18 |
3 | 5 | 7 | 8 | 2 | 10 | 11 | 4 | 0 | 6 | 1 | 9 | 15 | 22 | 21 | 16 | 12 | 23 | 13 | 14 | 17 | 19 | 18 | 20 |
4 | 8 | 10 | 9 | 0 | 11 | 7 | 6 | 1 | 3 | 2 | 5 | 22 | 21 | 15 | 14 | 17 | 16 | 20 | 23 | 18 | 13 | 12 | 19 |
5 | 7 | 3 | 2 | 11 | 0 | 8 | 1 | 6 | 10 | 9 | 4 | 19 | 16 | 18 | 20 | 13 | 21 | 14 | 12 | 15 | 17 | 23 | 22 |
6 | 9 | 11 | 5 | 1 | 7 | 10 | 3 | 2 | 4 | 0 | 8 | 21 | 15 | 22 | 23 | 18 | 14 | 19 | 16 | 12 | 20 | 17 | 13 |
7 | 3 | 5 | 11 | 8 | 6 | 2 | 9 | 10 | 0 | 4 | 1 | 17 | 20 | 23 | 22 | 14 | 18 | 12 | 13 | 19 | 15 | 21 | 16 |
8 | 10 | 4 | 0 | 7 | 1 | 9 | 2 | 3 | 11 | 5 | 6 | 16 | 18 | 19 | 12 | 15 | 20 | 22 | 21 | 23 | 14 | 13 | 17 |
9 | 11 | 6 | 1 | 10 | 2 | 5 | 0 | 4 | 7 | 8 | 3 | 18 | 19 | 16 | 21 | 23 | 12 | 17 | 20 | 13 | 22 | 15 | 14 |
10 | 4 | 8 | 7 | 9 | 3 | 0 | 5 | 11 | 1 | 6 | 2 | 20 | 23 | 17 | 13 | 19 | 22 | 16 | 18 | 21 | 12 | 14 | 15 |
11 | 6 | 9 | 10 | 5 | 4 | 1 | 8 | 7 | 2 | 3 | 0 | 23 | 17 | 20 | 18 | 21 | 13 | 15 | 22 | 14 | 16 | 19 | 12 |
12 | 14 | 13 | 16 | 22 | 19 | 20 | 18 | 15 | 17 | 21 | 23 | 0 | 2 | 1 | 8 | 3 | 9 | 7 | 5 | 6 | 10 | 4 | 11 |
13 | 12 | 14 | 18 | 21 | 16 | 23 | 19 | 22 | 20 | 15 | 17 | 1 | 0 | 2 | 10 | 5 | 11 | 3 | 7 | 9 | 4 | 8 | 6 |
14 | 13 | 12 | 19 | 15 | 18 | 17 | 16 | 21 | 23 | 22 | 20 | 2 | 1 | 0 | 4 | 7 | 6 | 5 | 3 | 11 | 8 | 10 | 9 |
15 | 17 | 19 | 12 | 14 | 20 | 13 | 21 | 16 | 22 | 23 | 18 | 3 | 6 | 4 | 0 | 8 | 1 | 11 | 2 | 5 | 7 | 9 | 10 |
16 | 22 | 20 | 15 | 17 | 13 | 19 | 23 | 12 | 14 | 18 | 21 | 8 | 5 | 9 | 3 | 0 | 4 | 10 | 6 | 2 | 11 | 1 | 7 |
17 | 19 | 15 | 20 | 16 | 21 | 22 | 12 | 23 | 18 | 14 | 13 | 7 | 11 | 10 | 2 | 4 | 0 | 9 | 1 | 3 | 5 | 6 | 8 |
18 | 21 | 23 | 22 | 20 | 14 | 16 | 17 | 13 | 12 | 19 | 15 | 9 | 8 | 5 | 11 | 6 | 7 | 0 | 10 | 4 | 1 | 3 | 2 |
19 | 15 | 17 | 21 | 23 | 12 | 18 | 20 | 14 | 13 | 16 | 22 | 5 | 9 | 8 | 1 | 10 | 2 | 6 | 0 | 7 | 3 | 11 | 4 |
20 | 16 | 22 | 23 | 18 | 15 | 21 | 13 | 17 | 19 | 12 | 14 | 10 | 7 | 11 | 5 | 1 | 8 | 4 | 9 | 0 | 6 | 2 | 3 |
21 | 23 | 18 | 14 | 13 | 17 | 12 | 22 | 19 | 15 | 20 | 16 | 6 | 4 | 3 | 9 | 11 | 5 | 2 | 8 | 10 | 0 | 7 | 1 |
22 | 20 | 16 | 13 | 12 | 23 | 14 | 15 | 18 | 21 | 17 | 19 | 4 | 3 | 6 | 7 | 2 | 10 | 8 | 11 | 1 | 9 | 0 | 5 |
23 | 18 | 21 | 17 | 19 | 22 | 15 | 14 | 20 | 16 | 13 | 12 | 11 | 10 | 7 | 6 | 9 | 3 | 1 | 4 | 8 | 2 | 5 | 0 |
Centre: 0
Centrum: 0
Nucleus: 0
Left Nucleus: 0
Middle Nucleus: 0
Right Nucleus: 0
1 Element of order 1: 0
15 Elements of order 2: 4 5 11 12 13 14 15 16 17 18 19 20 21 22 23
8 Elements of order 3: 1 2 3 6 7 8 9 10
Commutator Subloop: 0 1 2 3 4 5 6 7 8 9 10 11
Associator Subloop: 0 4 5 11
1 Conjugacy Class of size 1:
1 Conjugacy Class of size 3:
1 Conjugacy Class of size 8:
1 Conjugacy Class of size 12:
Automorphic Inverse Property: FAILS. (1-1)(4-1) neq (1*4)-1
Al Property: FAILS. The left inner mapping L1,3 = (12,23)(13,17)(14,20)(15,18)(16,21)(19,22) is not an automorphism. L1,3(1*12) neq L1,3(1)*L1,3(12)
Ar Property: FAILS. The right inner mapping R1,3 = (12,23)(13,17)(14,20)(15,18)(16,21)(19,22) is not an automorphism. R1,3(1*12) neq R1,3(1)*R1,3(12)
Right (Left, Full) Mult Group Orders: 4608 (4608, 27648)