Moufang Loop 24.15.1.0 of order 24


01234567891011121314151617181920212223
12046831095117131412192015231722181621
20163941158710141213172219211516232018
35782101140619152221161223131417191820
48109011761325222115141716202318131219
57321108161094191618201321141215172322
69115171032408211522231814191612201713
73511862910041172023221418121319152116
81040719231156161819121520222123141317
91161102504783181916212312172013221514
10487930511162202317131922161821121415
11691054187230231720182113152214161912
12141316221920181517212302183975610411
13121418211623192220151710210511379486
14131219151817162123222021047653118109
15171912142013211622231836408111257910
16222015171319231214182185930410621117
17191520162122122318141371110240913568
18212322201416171312191598511670104132
19151721231218201413162259811026073114
20162223181521131719121410711518490623
21231814131712221915201664391152810071
22201613122314151821171943672108111905
23182117192215142016131211107693148250

Centre:   0

Centrum:   0

Nucleus:   0

Left Nucleus:   0

Middle Nucleus:   0

Right Nucleus:   0

1 Element of order 1:   0

15 Elements of order 2:   4   5   11   12   13   14   15   16   17   18   19   20   21   22   23

8 Elements of order 3:   1   2   3   6   7   8   9   10

Commutator Subloop:   0   1   2   3   4   5   6   7   8   9   10   11

Associator Subloop:   0   4   5   11

1 Conjugacy Class of size 1:

1 Conjugacy Class of size 3:

1 Conjugacy Class of size 8:

1 Conjugacy Class of size 12:

Automorphic Inverse Property:   FAILS.   (1-1)(4-1) neq (1*4)-1

Al Property:   FAILS. The left inner mapping L1,3 = (12,23)(13,17)(14,20)(15,18)(16,21)(19,22) is not an automorphism.   L1,3(1*12) neq L1,3(1)*L1,3(12)

Ar Property:   FAILS. The right inner mapping R1,3 = (12,23)(13,17)(14,20)(15,18)(16,21)(19,22) is not an automorphism.   R1,3(1*12) neq R1,3(1)*R1,3(12)

Right (Left, Full) Mult Group Orders:   4608 (4608, 27648)


/ revised November, 2001