Moufang Loop 24.1.2.9 of order 24


01234567891011121314151617181920212223
12305746913188231120192221121415161710
23017654131112910815141716232019222118
30126475118231318919202122101514171612
46752130141917201615138101222119182321
54673201162114221517121013819231811920
67541023172215211416101281320182391119
75460312152016191714813121021911231822
81013121517161422331810475692221192011
91811231714151631001221212220191347568
10131281921222023092111856741171614153
11239181615141711221003222119208746513
12810132022211918211092365473161715141
13128101416171501812332746511212220199
14191520811913752162242018231731121016
15201419139118462252170223181613101217
16211722981311672041952318201410123115
17221621111389541972061823021512101314
18112392120192210113381216171514256740
19152014121823102117416722139116201385
20141915102318122216717421311195028136
21172216231210182014515619119134813207
22162117181012231915614520911317138024
23918112219202112381131017161415065472

Centre:   0   2

Centrum:   0   2

Nucleus:   0   2

Left Nucleus:   0   2

Middle Nucleus:   0   2

Right Nucleus:   0   2

1 Element of order 1:   0

1 Element of order 2:   2

2 Elements of order 3:   9   10

18 Elements of order 4:   1   3   4   5   6   7   8   13   14   15   16   17   18   19   20   21   22   23

2 Elements of order 6:   11   12

Commutator Subloop:   0   2   9   10   11   12

Associator Subloop:   0   9   10

2 Conjugacy Classes of size 1:

2 Conjugacy Classes of size 2:

3 Conjugacy Classes of size 6:

Automorphic Inverse Property:   FAILS.   (1-1)(5-1) neq (1*5)-1

Al Property:   FAILS. The left inner mapping L1,8 = (4,19,17)(5,21,14)(6,22,15)(7,20,16) is not an automorphism.   L1,8(1*4) neq L1,8(1)*L1,8(4)

Ar Property:   FAILS. The right inner mapping R1,8 = (4,19,17)(5,21,14)(6,22,15)(7,20,16) is not an automorphism.   R1,8(1*4) neq R1,8(1)*R1,8(4)

Right (Left, Full) Mult Group Orders:   1296 (1296, 5184)


/ revised November, 2001