0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 |
1 | 2 | 3 | 0 | 5 | 7 | 4 | 6 | 9 | 13 | 18 | 8 | 23 | 11 | 20 | 19 | 22 | 21 | 12 | 14 | 15 | 16 | 17 | 10 |
2 | 3 | 0 | 1 | 7 | 6 | 5 | 4 | 13 | 11 | 12 | 9 | 10 | 8 | 15 | 14 | 17 | 16 | 23 | 20 | 19 | 22 | 21 | 18 |
3 | 0 | 1 | 2 | 6 | 4 | 7 | 5 | 11 | 8 | 23 | 13 | 18 | 9 | 19 | 20 | 21 | 22 | 10 | 15 | 14 | 17 | 16 | 12 |
4 | 6 | 7 | 5 | 2 | 1 | 3 | 0 | 14 | 19 | 17 | 20 | 16 | 15 | 13 | 8 | 10 | 12 | 22 | 11 | 9 | 18 | 23 | 21 |
5 | 4 | 6 | 7 | 3 | 2 | 0 | 1 | 16 | 21 | 14 | 22 | 15 | 17 | 12 | 10 | 13 | 8 | 19 | 23 | 18 | 11 | 9 | 20 |
6 | 7 | 5 | 4 | 1 | 0 | 2 | 3 | 17 | 22 | 15 | 21 | 14 | 16 | 10 | 12 | 8 | 13 | 20 | 18 | 23 | 9 | 11 | 19 |
7 | 5 | 4 | 6 | 0 | 3 | 1 | 2 | 15 | 20 | 16 | 19 | 17 | 14 | 8 | 13 | 12 | 10 | 21 | 9 | 11 | 23 | 18 | 22 |
8 | 10 | 13 | 12 | 15 | 17 | 16 | 14 | 2 | 23 | 3 | 18 | 1 | 0 | 4 | 7 | 5 | 6 | 9 | 22 | 21 | 19 | 20 | 11 |
9 | 18 | 11 | 23 | 17 | 14 | 15 | 16 | 3 | 10 | 0 | 12 | 2 | 1 | 21 | 22 | 20 | 19 | 13 | 4 | 7 | 5 | 6 | 8 |
10 | 13 | 12 | 8 | 19 | 21 | 22 | 20 | 23 | 0 | 9 | 2 | 11 | 18 | 5 | 6 | 7 | 4 | 1 | 17 | 16 | 14 | 15 | 3 |
11 | 23 | 9 | 18 | 16 | 15 | 14 | 17 | 1 | 12 | 2 | 10 | 0 | 3 | 22 | 21 | 19 | 20 | 8 | 7 | 4 | 6 | 5 | 13 |
12 | 8 | 10 | 13 | 20 | 22 | 21 | 19 | 18 | 2 | 11 | 0 | 9 | 23 | 6 | 5 | 4 | 7 | 3 | 16 | 17 | 15 | 14 | 1 |
13 | 12 | 8 | 10 | 14 | 16 | 17 | 15 | 0 | 18 | 1 | 23 | 3 | 2 | 7 | 4 | 6 | 5 | 11 | 21 | 22 | 20 | 19 | 9 |
14 | 19 | 15 | 20 | 8 | 11 | 9 | 13 | 7 | 5 | 21 | 6 | 22 | 4 | 2 | 0 | 18 | 23 | 17 | 3 | 1 | 12 | 10 | 16 |
15 | 20 | 14 | 19 | 13 | 9 | 11 | 8 | 4 | 6 | 22 | 5 | 21 | 7 | 0 | 2 | 23 | 18 | 16 | 1 | 3 | 10 | 12 | 17 |
16 | 21 | 17 | 22 | 9 | 8 | 13 | 11 | 6 | 7 | 20 | 4 | 19 | 5 | 23 | 18 | 2 | 0 | 14 | 10 | 12 | 3 | 1 | 15 |
17 | 22 | 16 | 21 | 11 | 13 | 8 | 9 | 5 | 4 | 19 | 7 | 20 | 6 | 18 | 23 | 0 | 2 | 15 | 12 | 10 | 1 | 3 | 14 |
18 | 11 | 23 | 9 | 21 | 20 | 19 | 22 | 10 | 1 | 13 | 3 | 8 | 12 | 16 | 17 | 15 | 14 | 2 | 5 | 6 | 7 | 4 | 0 |
19 | 15 | 20 | 14 | 12 | 18 | 23 | 10 | 21 | 17 | 4 | 16 | 7 | 22 | 1 | 3 | 9 | 11 | 6 | 2 | 0 | 13 | 8 | 5 |
20 | 14 | 19 | 15 | 10 | 23 | 18 | 12 | 22 | 16 | 7 | 17 | 4 | 21 | 3 | 1 | 11 | 9 | 5 | 0 | 2 | 8 | 13 | 6 |
21 | 17 | 22 | 16 | 23 | 12 | 10 | 18 | 20 | 14 | 5 | 15 | 6 | 19 | 11 | 9 | 1 | 3 | 4 | 8 | 13 | 2 | 0 | 7 |
22 | 16 | 21 | 17 | 18 | 10 | 12 | 23 | 19 | 15 | 6 | 14 | 5 | 20 | 9 | 11 | 3 | 1 | 7 | 13 | 8 | 0 | 2 | 4 |
23 | 9 | 18 | 11 | 22 | 19 | 20 | 21 | 12 | 3 | 8 | 1 | 13 | 10 | 17 | 16 | 14 | 15 | 0 | 6 | 5 | 4 | 7 | 2 |
Centre: 0 2
Centrum: 0 2
Nucleus: 0 2
Left Nucleus: 0 2
Middle Nucleus: 0 2
Right Nucleus: 0 2
1 Element of order 1: 0
1 Element of order 2: 2
2 Elements of order 3: 9 10
18 Elements of order 4: 1 3 4 5 6 7 8 13 14 15 16 17 18 19 20 21 22 23
2 Elements of order 6: 11 12
Commutator Subloop: 0 2 9 10 11 12
Associator Subloop: 0 9 10
2 Conjugacy Classes of size 1:
2 Conjugacy Classes of size 2:
3 Conjugacy Classes of size 6:
Automorphic Inverse Property: FAILS. (1-1)(5-1) neq (1*5)-1
Al Property: FAILS. The left inner mapping L1,8 = (4,19,17)(5,21,14)(6,22,15)(7,20,16) is not an automorphism. L1,8(1*4) neq L1,8(1)*L1,8(4)
Ar Property: FAILS. The right inner mapping R1,8 = (4,19,17)(5,21,14)(6,22,15)(7,20,16) is not an automorphism. R1,8(1*4) neq R1,8(1)*R1,8(4)
Right (Left, Full) Mult Group Orders: 1296 (1296, 5184)