Group 18.1.18.0 of order 18


01234567891011121314151617
11611121510131714074592638
21112151013170161495683741
31215101317014111686714952
41510131701416121117925863
51013170141611151229836174
61317014161112101538147295
71701416111215131041259386
81416111215101301763471529
90141611121510171352368417
10798123465110141213161715
11456798132010131412171516
12567981243141317161501011
13981234576121416151711010
14234567918131215171610110
15679812354161701110141312
16345679821171510011131214
17812345697151611100121413

Centre:   0   1   2   3   4   5   6   7   8   9   10   11   12   13   14   15   16   17

Centrum:   0   1   2   3   4   5   6   7   8   9   10   11   12   13   14   15   16   17

Nucleus:   0   1   2   3   4   5   6   7   8   9   10   11   12   13   14   15   16   17

Left Nucleus:   0   1   2   3   4   5   6   7   8   9   10   11   12   13   14   15   16   17

Middle Nucleus:   0   1   2   3   4   5   6   7   8   9   10   11   12   13   14   15   16   17

Right Nucleus:   0   1   2   3   4   5   6   7   8   9   10   11   12   13   14   15   16   17

1 Element of order 1:   0

1 Element of order 2:   8

2 Elements of order 3:   10   11

2 Elements of order 6:   3   6

6 Elements of order 9:   12   13   14   15   16   17

6 Elements of order 18:   1   2   4   5   7   9

Commutator Subloop:   0

Associator Subloop:   0

18 Conjugacy Classes of size 1:

Automorphic Inverse Property:   HOLDS

Al Property:   HOLDS (i.e. every left inner mapping La,b is an automorphism)

Ar Property:   HOLDS (i.e. every right inner mapping Ra,b is an automorphism)

Right (Left, Full) Mult Group Orders:   18 (18, 18)


/ revised November, 2001