0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 |
1 | 16 | 11 | 12 | 15 | 10 | 13 | 17 | 14 | 0 | 7 | 4 | 5 | 9 | 2 | 6 | 3 | 8 |
2 | 11 | 12 | 15 | 10 | 13 | 17 | 0 | 16 | 14 | 9 | 5 | 6 | 8 | 3 | 7 | 4 | 1 |
3 | 12 | 15 | 10 | 13 | 17 | 0 | 14 | 11 | 16 | 8 | 6 | 7 | 1 | 4 | 9 | 5 | 2 |
4 | 15 | 10 | 13 | 17 | 0 | 14 | 16 | 12 | 11 | 1 | 7 | 9 | 2 | 5 | 8 | 6 | 3 |
5 | 10 | 13 | 17 | 0 | 14 | 16 | 11 | 15 | 12 | 2 | 9 | 8 | 3 | 6 | 1 | 7 | 4 |
6 | 13 | 17 | 0 | 14 | 16 | 11 | 12 | 10 | 15 | 3 | 8 | 1 | 4 | 7 | 2 | 9 | 5 |
7 | 17 | 0 | 14 | 16 | 11 | 12 | 15 | 13 | 10 | 4 | 1 | 2 | 5 | 9 | 3 | 8 | 6 |
8 | 14 | 16 | 11 | 12 | 15 | 10 | 13 | 0 | 17 | 6 | 3 | 4 | 7 | 1 | 5 | 2 | 9 |
9 | 0 | 14 | 16 | 11 | 12 | 15 | 10 | 17 | 13 | 5 | 2 | 3 | 6 | 8 | 4 | 1 | 7 |
10 | 7 | 9 | 8 | 1 | 2 | 3 | 4 | 6 | 5 | 11 | 0 | 14 | 12 | 13 | 16 | 17 | 15 |
11 | 4 | 5 | 6 | 7 | 9 | 8 | 1 | 3 | 2 | 0 | 10 | 13 | 14 | 12 | 17 | 15 | 16 |
12 | 5 | 6 | 7 | 9 | 8 | 1 | 2 | 4 | 3 | 14 | 13 | 17 | 16 | 15 | 0 | 10 | 11 |
13 | 9 | 8 | 1 | 2 | 3 | 4 | 5 | 7 | 6 | 12 | 14 | 16 | 15 | 17 | 11 | 0 | 10 |
14 | 2 | 3 | 4 | 5 | 6 | 7 | 9 | 1 | 8 | 13 | 12 | 15 | 17 | 16 | 10 | 11 | 0 |
15 | 6 | 7 | 9 | 8 | 1 | 2 | 3 | 5 | 4 | 16 | 17 | 0 | 11 | 10 | 14 | 13 | 12 |
16 | 3 | 4 | 5 | 6 | 7 | 9 | 8 | 2 | 1 | 17 | 15 | 10 | 0 | 11 | 13 | 12 | 14 |
17 | 8 | 1 | 2 | 3 | 4 | 5 | 6 | 9 | 7 | 15 | 16 | 11 | 10 | 0 | 12 | 14 | 13 |
Centre: 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
Centrum: 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
Nucleus: 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
Left Nucleus: 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
Middle Nucleus: 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
Right Nucleus: 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
1 Element of order 1: 0
1 Element of order 2: 8
2 Elements of order 3: 10 11
2 Elements of order 6: 3 6
6 Elements of order 9: 12 13 14 15 16 17
6 Elements of order 18: 1 2 4 5 7 9
Commutator Subloop: 0
Associator Subloop: 0
18 Conjugacy Classes of size 1:
Automorphic Inverse Property: HOLDS
Al Property: HOLDS (i.e. every left inner mapping La,b is an automorphism)
Ar Property: HOLDS (i.e. every right inner mapping Ra,b is an automorphism)
Right (Left, Full) Mult Group Orders: 18 (18, 18)