Right Bol Loop 24.11.2.0 of order 24


01234567891011121314151617181920212223
12503411109687131215141716212322182019
25410378611910171416121315192018222321
30145291110876141712161513222123191820
43052186710119151613171412201819232122
54321010911768161517131214232221201918
61179810024351202322182119151712161413
71081169240135192221202318171215141316
89610711402513182123192220121517131614
96118107315420221920211823141613171512
10897116531204211819232022131416121715
11710698153042232018221921161314151217
12181719152016141322212301345287610911
13221621142315121720181910432510119867
14211323162217151218192032054191011786
15191220171813161421232245123068711109
16231422132112171519201854210311910678
17201518121914131623222123501476891110
18172012191523212216131481011796042153
19121815201722232113141679106118204315
20151917181221222314161361198107420531
21132214231620191817121510871169135024
22162313211419182015171297610811351240
23142116221318201912151711689710513402

Centre:   0   10

Centrum:   0   10

Nucleus:   0   10

Left Nucleus:   0   5   6   10

Middle Nucleus:   0   2   4   9   10   11

Right Nucleus:   0   2   4   9   10   11

1 Element of order 1:   0

11 Elements of order 2:   5   6   10   12   13   14   16   18   19   20   21

2 Elements of order 3:   2   4

10 Elements of order 6:   1   3   7   8   9   11   15   17   22   23

Commutator Subloop:   0   2   4   9   10   11

Associator Subloop:   0   2   4   9   10   11

2 Conjugacy Classes of size 1:

2 Conjugacy Classes of size 2:

3 Conjugacy Classes of size 6:

Automorphic Inverse Property:   FAILS.   (1-1)(13-1) neq (1*13)-1

Al Property:   FAILS. The left inner mapping L1,1 = (12,15,17)(13,16,14)(18,20,19)(21,23,22) is not an automorphism.   L1,1(1*12) neq L1,1(1)*L1,1(12)

Ar Property:   HOLDS (i.e. every right inner mapping Ra,b is an automorphism)

Right (Left, Full) Mult Group Orders:   48 (2592, 10368)


/ revised November, 2001