Group 18.3.3.1 of order 18


01234567891011121314151617
11701216131115141074269853
20121711161310151496358741
31217013111614101585147962
41510141712016131117692385
51415101201713111638471296
61014150171211161329583174
71611131514101712041926538
81316111410151201753714629
91113161015140171262835417
10465789132110141213161715
11798132456010131412171516
12231645978141317161510110
13987213645121416151701011
14654978213131215171611010
15546897321161710011131214
16879321564171511100121413
17312564897151601110141312

Centre:   0   12   17

Centrum:   0   12   17

Nucleus:   0   1   2   3   4   5   6   7   8   9   10   11   12   13   14   15   16   17

Left Nucleus:   0   1   2   3   4   5   6   7   8   9   10   11   12   13   14   15   16   17

Middle Nucleus:   0   1   2   3   4   5   6   7   8   9   10   11   12   13   14   15   16   17

Right Nucleus:   0   1   2   3   4   5   6   7   8   9   10   11   12   13   14   15   16   17

1 Element of order 1:   0

3 Elements of order 2:   3   5   8

8 Elements of order 3:   10   11   12   13   14   15   16   17

6 Elements of order 6:   1   2   4   6   7   9

Commutator Subloop:   0   10   11

Associator Subloop:   0

3 Conjugacy Classes of size 1:

3 Conjugacy Classes of size 2:

3 Conjugacy Classes of size 3:

Automorphic Inverse Property:   FAILS.   (1-1)(5-1) neq (1*5)-1

Al Property:   HOLDS (i.e. every left inner mapping La,b is an automorphism)

Ar Property:   HOLDS (i.e. every right inner mapping Ra,b is an automorphism)

Right (Left, Full) Mult Group Orders:   18 (18, 108)


/ revised November, 2001