Right Bol Loop 30.1.2.1 of order 30


01234567891011121314151617181920212223242526272829
12403679581113101412161915171827262521292820232422
24310798651314111210191816151723202826222427212925
30142856971210141113171518191626232927282221202524
43021985761412131011181719161521272420252923262228
57896101411131201324202123262724251722151628291819
69587111213141012043272621202329281525161924221718
78659131014121124130232026272122241628191829251517
86975121310111430412262327212028221829171525241916
95768141112101343201212720232625291924181722281615
10131214110123459768292224282516152019272318172621
11141012131240368975222529242819162718232117152026
12111413103014287659242928252215172616202719182123
13121110142431075896252822292418192317212615162720
14101311124302196587282425222917182115262016192327
15191718162726232120292224252814111013124190852376
16181517192320212627222529282412131114103281564097
17161819152021272326242928222513101211142073981465
18151916172623202721282425292211121410131364790258
19171615182127262023252822242910141312110452673189
20232621272429222825171916151843210891351412671110
21202327262528242229191517181612034761091113851214
22252829241619181517232127262056897121311132141040
23262720212225282924161718191501342651271011981413
24292228251715161819202726232198765131031220111414
25282422291918171615212623202767589101421304121131
26272123202824292522181615171924103971181314561012
27212026232922252428151819161730421581461210791311
28242925221817151916262021272379658111241413101302
29222524281516191718272320212685976141101041131223

Centre:   0   28

Centrum:   0   28

Nucleus:   0   28

Left Nucleus:   0   1   2   3   4   22   24   25   28   29

Middle Nucleus:   0   28

Right Nucleus:   0   28

1 Element of order 1:   0

1 Element of order 2:   28

10 Elements of order 3:   5   6   7   8   9   10   11   12   13   14

4 Elements of order 5:   1   2   3   4

10 Elements of order 6:   15   16   17   18   19   20   21   23   26   27

4 Elements of order 10:   22   24   25   29

Commutator Subloop:   0   1   2   3   4

Associator Subloop:   0   1   2   3   4

2 Conjugacy Classes of size 1:

2 Conjugacy Classes of size 4:

4 Conjugacy Classes of size 5:

Automorphic Inverse Property:   HOLDS

Al Property:   FAILS. The left inner mapping L1,5 = (5,7,8,6,9)(10,12,14,13,11)(15,19,17,16,18)(20,26,21,23,27) is not an automorphism.   L1,5(5*5) neq L1,5(5)*L1,5(5)

Ar Property:   HOLDS (i.e. every right inner mapping Ra,b is an automorphism)

Right (Left, Full) Mult Group Orders:   150 (12000, 12000)


/ revised November, 2001