Group 18.1.18.1 of order 18


01234567891011121314151617
11415101201713111674269853
21510141712016131196358741
31014150171211161385147962
41217013111614101517692385
50121711161310151438471296
61701216131115141029583174
71316111410151201741926538
81113161015140171253714629
91611131514101712062835417
10798132456110141213161715
11465789132010131412171516
12231645978141317161510110
13654978213121416151701011
14987213645131215171611010
15879321564161710011131214
16546897321171511100121413
17312564897151601110141312

Centre:   0   1   2   3   4   5   6   7   8   9   10   11   12   13   14   15   16   17

Centrum:   0   1   2   3   4   5   6   7   8   9   10   11   12   13   14   15   16   17

Nucleus:   0   1   2   3   4   5   6   7   8   9   10   11   12   13   14   15   16   17

Left Nucleus:   0   1   2   3   4   5   6   7   8   9   10   11   12   13   14   15   16   17

Middle Nucleus:   0   1   2   3   4   5   6   7   8   9   10   11   12   13   14   15   16   17

Right Nucleus:   0   1   2   3   4   5   6   7   8   9   10   11   12   13   14   15   16   17

1 Element of order 1:   0

1 Element of order 2:   9

8 Elements of order 3:   10   11   12   13   14   15   16   17

8 Elements of order 6:   1   2   3   4   5   6   7   8

Commutator Subloop:   0

Associator Subloop:   0

18 Conjugacy Classes of size 1:

Automorphic Inverse Property:   HOLDS

Al Property:   HOLDS (i.e. every left inner mapping La,b is an automorphism)

Ar Property:   HOLDS (i.e. every right inner mapping Ra,b is an automorphism)

Right (Left, Full) Mult Group Orders:   18 (18, 18)


/ revised November, 2001