Group 24.1.24.0 of order 24


01234567891011121314151617181920212223
12320212201516131917141824358611791012
22022232113017141819151643181156101297
32123222015141801716131912465118121079
42221202314131915161801731211685971210
50131514161820172122192381167101292341
61501413181923162220172158111279101423
71617181920231322151421010912241386115
81314015171622192321182011651097124132
91918171621221523130201412710314268511
10171916182220142101523139127432111568
11141513019172118202316226589121073214
12181619172321020141322157109123451186
13241385101112967141501719161822232120
14432111896712510150131918171621202322
15314261112510789013141816191723222021
16586117122103491171918202223211315140
17811561074913122191816222120231401513
18651181291742103161719232021220141315
19116859103122174181617212322201513014
20710129218461135222123131401517181916
21912107346185211232022150141318171619
22109712421135618212320141513019161817
23127910135211846202221013151416191718

Centre:   0   1   2   3   4   5   6   7   8   9   10   11   12   13   14   15   16   17   18   19   20   21   22   23

Centrum:   0   1   2   3   4   5   6   7   8   9   10   11   12   13   14   15   16   17   18   19   20   21   22   23

Nucleus:   0   1   2   3   4   5   6   7   8   9   10   11   12   13   14   15   16   17   18   19   20   21   22   23

Left Nucleus:   0   1   2   3   4   5   6   7   8   9   10   11   12   13   14   15   16   17   18   19   20   21   22   23

Middle Nucleus:   0   1   2   3   4   5   6   7   8   9   10   11   12   13   14   15   16   17   18   19   20   21   22   23

Right Nucleus:   0   1   2   3   4   5   6   7   8   9   10   11   12   13   14   15   16   17   18   19   20   21   22   23

1 Element of order 1:   0

1 Element of order 2:   14

2 Elements of order 3:   17   21

2 Elements of order 4:   13   15

2 Elements of order 6:   18   20

4 Elements of order 8:   7   9   10   12

4 Elements of order 12:   16   19   22   23

8 Elements of order 24:   1   2   3   4   5   6   8   11

Commutator Subloop:   0

Associator Subloop:   0

24 Conjugacy Classes of size 1:

Automorphic Inverse Property:   HOLDS

Al Property:   HOLDS (i.e. every left inner mapping La,b is an automorphism)

Ar Property:   HOLDS (i.e. every right inner mapping Ra,b is an automorphism)

Right (Left, Full) Mult Group Orders:   24 (24, 24)


/ revised November, 2001