Right Bol Loop 24.21.1.0 of order 24


01234567891011121314151617181920212223
12045378610119131412171516192321222018
20153486711910141213161715231822202119
35402191011678151716121413212223181920
43510211910867161517141312202119231822
54321010119786171615131214222018192321
68710119021345181923212022131415171612
76891011102534231819202221121316151714
87611910210453192318222120141217161513
91110786345021212220182319171612131415
10911678534102202122231918151714121316
11109867453210222021191823161513141217
12141316151719231822202102135478910116
13121417161518192321222010254367119108
14131215171623181920212221043586101197
15161714121322202119231834501210116789
16171512131420212223181945320111978610
17151613141221222018192353412091086711
18231922202113141217161567891110025341
19182321222012131415171686711109104532
20222123181916151714121310119768450213
21202219231817161513141291011687341025
22212018192315171612131411910876532104
23191820212214121316151778610911213450

Centre:   0

Centrum:   0

Nucleus:   0

Left Nucleus:   0   3   8   11   13   17   20   23

Middle Nucleus:   0   1   2

Right Nucleus:   0   1   2

1 Element of order 1:   0

21 Elements of order 2:   3   4   5   6   7   8   9   10   11   12   13   14   15   16   17   18   19   20   21   22   23

2 Elements of order 3:   1   2

Commutator Subloop:   0   1   2

Associator Subloop:   0   1   2

1 Conjugacy Class of size 1:

1 Conjugacy Class of size 2:

7 Conjugacy Classes of size 3:

Automorphic Inverse Property:   FAILS.   (1-1)(4-1) neq (1*4)-1

Al Property:   FAILS. The left inner mapping L3,1 = (6,8,7)(9,11,10)(12,14,13)(15,16,17)(18,23,19)(20,22,21) is not an automorphism.   L3,1(6*3) neq L3,1(6)*L3,1(3)

Ar Property:   HOLDS (i.e. every right inner mapping Ra,b is an automorphism)

Right (Left, Full) Mult Group Orders:   48 (17496, 104976)


/ revised November, 2001