Right Bol Loop 24.17.3.0 of order 24


01234567891011121314151617181920212223
12503476981110131712141516192021222318
25410311810679171613121415202122231819
30145281161097141215161713231819202122
43052191071186151416171312222318192021
54321010911768161517131214212223181920
67118910013452181923222120121317161514
71110689104325192018232221131716151412
86791011320541231822212019141213171615
98610117451230222321201918151412131716
10981176542103212220191823161514121317
11109768235014202119182322171615141213
12141513171618212320192203125468910117
13121417161519202221182310254376891011
14151612131723221819202134012589101176
15161714121322231918212045301291011768
16171315141221182023221952430110117689
17131216151420192122231821543011768910
18232219202112161417131568711109034521
19182320212213171516121476111098103452
20191821222317131615141211710986210345
21201922231816121714151310119867521034
22212023181915141312161791086711452103
23222118192014151213171689671110345210

Centre:   0

Centrum:   0   5   6

Nucleus:   0

Left Nucleus:   0   5   6   10   14   17   20   23

Middle Nucleus:   0   2   4

Right Nucleus:   0   2   4

1 Element of order 1:   0

17 Elements of order 2:   5   6   7   8   10   12   13   14   15   16   17   18   19   20   21   22   23

2 Elements of order 3:   2   4

4 Elements of order 6:   1   3   9   11

Commutator Subloop:   0   2   4

Associator Subloop:   0   2   4

1 Conjugacy Class of size 1:

1 Conjugacy Class of size 2:

7 Conjugacy Classes of size 3:

Automorphic Inverse Property:   FAILS.   (1-1)(7-1) neq (1*7)-1

Al Property:   FAILS. The left inner mapping L1,1 = (6,9,11)(7,10,8) is not an automorphism.   L1,1(1*6) neq L1,1(1)*L1,1(6)

Ar Property:   HOLDS (i.e. every right inner mapping Ra,b is an automorphism)

Right (Left, Full) Mult Group Orders:   48 (17496, 34992)


/ revised November, 2001