Group 16.3.16.0 of order 16


0123456789101112131415
1250367491381014121511
2561074313129815141110
3014725610811151391214
4307612511101514981312
5672143012141391115108
6745230114151213101189
7436501215111412810913
8913101112141525107643
9131281014151156214730
1089111513121412036574
1110815149131201345267
1214151391110874650312
1312149815111067523401
1415111213108943761025
1511101412891330472156

Centre:   0   1   2   3   4   5   6   7   8   9   10   11   12   13   14   15

Centrum:   0   1   2   3   4   5   6   7   8   9   10   11   12   13   14   15

Nucleus:   0   1   2   3   4   5   6   7   8   9   10   11   12   13   14   15

Left Nucleus:   0   1   2   3   4   5   6   7   8   9   10   11   12   13   14   15

Middle Nucleus:   0   1   2   3   4   5   6   7   8   9   10   11   12   13   14   15

Right Nucleus:   0   1   2   3   4   5   6   7   8   9   10   11   12   13   14   15

1 Element of order 1:   0

3 Elements of order 2:   6   10   12

4 Elements of order 4:   2   4   9   15

8 Elements of order 8:   1   3   5   7   8   11   13   14

Commutator Subloop:   0

Associator Subloop:   0

16 Conjugacy Classes of size 1:

Automorphic Inverse Property:   HOLDS

Al Property:   HOLDS (i.e. every left inner mapping La,b is an automorphism)

Ar Property:   HOLDS (i.e. every right inner mapping Ra,b is an automorphism)

Right (Left, Full) Mult Group Orders:   16 (16, 16)


/ revised October, 2001