Group 12.1.12.0 of order 12


01234567891011
17098111023456
20789101114365
39810110746521
48911107035612
51110079862134
61011708951243
72143650981110
83465219111070
94356128101107
10562134117089
11651243100798

Centre:   0   1   2   3   4   5   6   7   8   9   10   11

Centrum:   0   1   2   3   4   5   6   7   8   9   10   11

Nucleus:   0   1   2   3   4   5   6   7   8   9   10   11

Left Nucleus:   0   1   2   3   4   5   6   7   8   9   10   11

Middle Nucleus:   0   1   2   3   4   5   6   7   8   9   10   11

Right Nucleus:   0   1   2   3   4   5   6   7   8   9   10   11

1 Element of order 1:   0

1 Element of order 2:   7

2 Elements of order 3:   8   11

2 Elements of order 4:   1   2

2 Elements of order 6:   9   10

4 Elements of order 12:   3   4   5   6

Commutator Subloop:   0

Associator Subloop:   0

12 Conjugacy Classes of size 1:

Automorphic Inverse Property:   HOLDS

Al Property:   HOLDS (i.e. every left inner mapping La,b is an automorphism)

Ar Property:   HOLDS (i.e. every right inner mapping Ra,b is an automorphism)

Right (Left, Full) Mult Group Orders:   12 (12, 12)


/ revised November, 2001