Moufang Loop 24.19.2.2 of order 24


01234567891011121314151617181920212223
12503471168910131712141516192123222018
25410311107689171613121415212218202319
30145286910117141215161713231822192120
43052198101176151416171312202321181922
54321010911768161517131214222019231821
68971110031254182319212220121417151613
76811109102543232018192122141513161712
89106711340125191821222023131216141517
91011867453012211922202318171315121416
10117986524301222120231819161714131215
11761098215430202223181921151612171314
12141513171618231921222003125468119107
13121417161523201819212210254389710116
14151612131719182122202334012576108911
15161714121321192220231845301211796810
16171315141222212023181952430110118769
17131216151420222318192121543091061178
18232019212212141317161568711109032451
19182321222014151213171689671110105342
20222123181917131615141211710986450213
21191822202315161412131791086711214035
22211920231816171514121310119867523104
23202218192113121716151476111098341520

Centre:   0   5

Centrum:   0   5

Nucleus:   0   5

Left Nucleus:   0   5

Middle Nucleus:   0   5

Right Nucleus:   0   5

1 Element of order 1:   0

19 Elements of order 2:   5   6   7   8   9   10   11   12   13   14   15   16   17   18   19   20   21   22   23

2 Elements of order 3:   2   4

2 Elements of order 6:   1   3

Commutator Subloop:   0   2   4

Associator Subloop:   0   2   4

2 Conjugacy Classes of size 1:

2 Conjugacy Classes of size 2:

6 Conjugacy Classes of size 3:

Automorphic Inverse Property:   FAILS.   (1-1)(7-1) neq (1*7)-1

Al Property:   FAILS. The left inner mapping L1,6 = (12,17,15)(13,16,14)(18,21,20)(19,22,23) is not an automorphism.   L1,6(6*12) neq L1,6(6)*L1,6(12)

Ar Property:   FAILS. The right inner mapping R1,6 = (12,15,17)(13,14,16)(18,20,21)(19,23,22) is not an automorphism.   R1,6(6*12) neq R1,6(6)*R1,6(12)

Right (Left, Full) Mult Group Orders:   1296 (1296, 5184)


/ revised November, 2001