0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 |
1 | 2 | 5 | 0 | 3 | 4 | 7 | 13 | 16 | 6 | 21 | 9 | 11 | 12 | 18 | 20 | 17 | 14 | 19 | 8 | 23 | 22 | 15 | 10 |
2 | 5 | 4 | 1 | 0 | 3 | 13 | 12 | 17 | 7 | 22 | 6 | 9 | 11 | 19 | 23 | 14 | 18 | 8 | 16 | 10 | 15 | 20 | 21 |
3 | 0 | 1 | 4 | 5 | 2 | 9 | 6 | 19 | 11 | 23 | 12 | 13 | 7 | 17 | 22 | 8 | 16 | 14 | 18 | 15 | 10 | 21 | 20 |
4 | 3 | 0 | 5 | 2 | 1 | 11 | 9 | 18 | 12 | 20 | 13 | 7 | 6 | 16 | 21 | 19 | 8 | 17 | 14 | 22 | 23 | 10 | 15 |
5 | 4 | 3 | 2 | 1 | 0 | 12 | 11 | 14 | 13 | 15 | 7 | 6 | 9 | 8 | 10 | 18 | 19 | 16 | 17 | 21 | 20 | 23 | 22 |
6 | 8 | 15 | 10 | 14 | 12 | 16 | 3 | 20 | 22 | 7 | 2 | 18 | 23 | 21 | 11 | 0 | 9 | 5 | 13 | 1 | 4 | 17 | 19 |
7 | 16 | 20 | 21 | 18 | 11 | 17 | 0 | 23 | 15 | 13 | 5 | 19 | 10 | 22 | 9 | 1 | 6 | 4 | 12 | 2 | 3 | 14 | 8 |
8 | 15 | 12 | 6 | 10 | 14 | 3 | 23 | 0 | 16 | 4 | 22 | 2 | 18 | 5 | 1 | 9 | 21 | 13 | 20 | 19 | 17 | 11 | 7 |
9 | 19 | 22 | 23 | 17 | 13 | 8 | 4 | 15 | 21 | 6 | 1 | 14 | 20 | 10 | 12 | 3 | 11 | 2 | 7 | 0 | 5 | 16 | 18 |
10 | 6 | 8 | 14 | 12 | 15 | 22 | 16 | 13 | 2 | 19 | 18 | 23 | 3 | 9 | 17 | 20 | 0 | 21 | 5 | 11 | 7 | 4 | 1 |
11 | 18 | 21 | 20 | 16 | 7 | 19 | 5 | 22 | 10 | 9 | 0 | 17 | 15 | 23 | 13 | 4 | 12 | 1 | 6 | 3 | 2 | 8 | 14 |
12 | 14 | 10 | 15 | 8 | 6 | 18 | 2 | 21 | 23 | 11 | 3 | 16 | 22 | 20 | 7 | 5 | 13 | 0 | 9 | 4 | 1 | 19 | 17 |
13 | 17 | 23 | 22 | 19 | 9 | 14 | 1 | 10 | 20 | 12 | 4 | 8 | 21 | 15 | 6 | 2 | 7 | 3 | 11 | 5 | 0 | 18 | 16 |
14 | 10 | 6 | 12 | 15 | 8 | 2 | 22 | 5 | 18 | 1 | 23 | 3 | 16 | 0 | 4 | 13 | 20 | 9 | 21 | 17 | 19 | 7 | 11 |
15 | 12 | 14 | 8 | 6 | 10 | 23 | 18 | 9 | 3 | 17 | 16 | 22 | 2 | 13 | 19 | 21 | 5 | 20 | 0 | 7 | 11 | 1 | 4 |
16 | 20 | 11 | 7 | 21 | 18 | 0 | 10 | 1 | 17 | 3 | 15 | 5 | 19 | 4 | 2 | 6 | 22 | 12 | 23 | 8 | 14 | 9 | 13 |
17 | 23 | 9 | 13 | 22 | 19 | 1 | 21 | 2 | 14 | 0 | 20 | 4 | 8 | 3 | 5 | 7 | 15 | 11 | 10 | 16 | 18 | 6 | 12 |
18 | 21 | 7 | 11 | 20 | 16 | 5 | 15 | 4 | 19 | 2 | 10 | 0 | 17 | 1 | 3 | 12 | 23 | 6 | 22 | 14 | 8 | 13 | 9 |
19 | 22 | 13 | 9 | 23 | 17 | 4 | 20 | 3 | 8 | 5 | 21 | 1 | 14 | 2 | 0 | 11 | 10 | 7 | 15 | 18 | 16 | 12 | 6 |
20 | 11 | 18 | 16 | 7 | 21 | 10 | 19 | 6 | 0 | 14 | 17 | 15 | 5 | 12 | 8 | 22 | 4 | 23 | 1 | 13 | 9 | 2 | 3 |
21 | 7 | 16 | 18 | 11 | 20 | 15 | 17 | 12 | 5 | 8 | 19 | 10 | 0 | 6 | 14 | 23 | 1 | 22 | 4 | 9 | 13 | 3 | 2 |
22 | 13 | 17 | 19 | 9 | 23 | 20 | 14 | 11 | 4 | 16 | 8 | 21 | 1 | 7 | 18 | 10 | 2 | 15 | 3 | 6 | 12 | 0 | 5 |
23 | 9 | 19 | 17 | 13 | 22 | 21 | 8 | 7 | 1 | 18 | 14 | 20 | 4 | 11 | 16 | 15 | 3 | 10 | 2 | 12 | 6 | 5 | 0 |
Centre: 0 5
Centrum: 0 5
Nucleus: 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23
Left Nucleus: 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23
Middle Nucleus: 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23
Right Nucleus: 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23
1 Element of order 1: 0
7 Elements of order 2: 5 7 8 11 14 22 23
8 Elements of order 3: 2 4 6 13 15 16 19 21
8 Elements of order 6: 1 3 9 10 12 17 18 20
Commutator Subloop: 0 11 14 23
Associator Subloop: 0
2 Conjugacy Classes of size 1:
2 Conjugacy Classes of size 3:
4 Conjugacy Classes of size 4:
Automorphic Inverse Property: FAILS. (1-1)(7-1) neq (1*7)-1
Al Property: HOLDS (i.e. every left inner mapping La,b is an automorphism)
Ar Property: HOLDS (i.e. every right inner mapping Ra,b is an automorphism)
Right (Left, Full) Mult Group Orders: 24 (24, 288)