Group 12.1.2.0 of order 12


01234567891011
17011108926534
20710119815643
39870111041256
48907101132165
51011987063421
61110890754312
72143650981110
83456219111007
94365128101170
10651234110798
11562143107089

Centre:   0   7

Centrum:   0   7

Nucleus:   0   1   2   3   4   5   6   7   8   9   10   11

Left Nucleus:   0   1   2   3   4   5   6   7   8   9   10   11

Middle Nucleus:   0   1   2   3   4   5   6   7   8   9   10   11

Right Nucleus:   0   1   2   3   4   5   6   7   8   9   10   11

1 Element of order 1:   0

1 Element of order 2:   7

2 Elements of order 3:   9   11

6 Elements of order 4:   1   2   3   4   5   6

2 Elements of order 6:   8   10

Commutator Subloop:   0   9   11

Associator Subloop:   0

2 Conjugacy Classes of size 1:

2 Conjugacy Classes of size 2:

2 Conjugacy Classes of size 3:

Automorphic Inverse Property:   FAILS.   (1-1)(4-1) neq (1*4)-1

Al Property:   HOLDS (i.e. every left inner mapping La,b is an automorphism)

Ar Property:   HOLDS (i.e. every right inner mapping Ra,b is an automorphism)

Right (Left, Full) Mult Group Orders:   12 (12, 72)


/ revised November, 2001