Right Bol Loop 24.11.6.0 of order 24


01234567891011121314151617181920212223
12503476981110131215141716192021222318
25410311810679171416121315202122231819
30145281161097141712161513231819202122
43052191071186151613171412222318192021
54321010911768161517131214212223181920
67118910013452181923222120121317161514
71110689104325191822232021131716151412
86791011320541232018212219141213171615
98610117451230222119202318151412131716
10981176542103212220191823161514121317
11109768235014202321181922171615141213
12131714151618211922232041325098671110
13171612141519201823222130452186711109
14121315161723222021181952014310986711
15141216171322232120191825103411109867
16151417131221182219202314230571110986
17161513121420192318212203541267111098
18192023222112161315141797811106430125
19202118232213171214151686910117301254
20212219182317131412161568109711012543
21222320191816121513171479118610125430
22231821201915141617131211107689254301
23181922212014151716121310116798543012

Centre:   0   22

Centrum:   0   5   6   15   19   22

Nucleus:   0   22

Left Nucleus:   0   5   6   10   13   15   19   22

Middle Nucleus:   0   2   4   18   20   22

Right Nucleus:   0   2   4   18   20   22

1 Element of order 1:   0

11 Elements of order 2:   5   6   7   8   10   13   14   15   16   19   22

2 Elements of order 3:   2   4

10 Elements of order 6:   1   3   9   11   12   17   18   20   21   23

Commutator Subloop:   0   2   4

Associator Subloop:   0   2   4

2 Conjugacy Classes of size 1:

2 Conjugacy Classes of size 2:

6 Conjugacy Classes of size 3:

Automorphic Inverse Property:   FAILS.   (1-1)(7-1) neq (1*7)-1

Al Property:   FAILS. The left inner mapping L1,1 = (6,9,11)(7,10,8)(12,15,17)(13,16,14) is not an automorphism.   L1,1(1*6) neq L1,1(1)*L1,1(6)

Ar Property:   HOLDS (i.e. every right inner mapping Ra,b is an automorphism)

Right (Left, Full) Mult Group Orders:   48 (648, 1296)


/ revised November, 2001