Group 24.1.4.2 of order 24


01234567891011121314151617181920212223
11314015212216231917201824310971268511
21415130232117201819221643191210751186
30131514222018211716231912471012911568
41501413202319221618211731212791086115
51719161815142002122132381164321121079
61617181914132315222002158112413971210
72221202318191316151417010912116851423
81918171601522132321142011653142791012
92320212217161519130181412710586114132
10212322201618141701519139127651182341
11181619171302114202315226581234101297
12202223211917018141316157109811563214
13241385101112967141501719161822232120
14432111896712510150131918171621202322
15314261112510789013141816191723222021
16586117122103491171918202223211315140
17811561074913122191816222120231401513
18651181291742103161719232021220141315
19116859103122174181617212322201513014
20710129218461135222123131401517181916
21912107346185211232022150141318171619
22109712421135618212320141513019161817
23127910135211846202221013151416191718

Centre:   0   13   14   15

Centrum:   0   13   14   15

Nucleus:   0   1   2   3   4   5   6   7   8   9   10   11   12   13   14   15   16   17   18   19   20   21   22   23

Left Nucleus:   0   1   2   3   4   5   6   7   8   9   10   11   12   13   14   15   16   17   18   19   20   21   22   23

Middle Nucleus:   0   1   2   3   4   5   6   7   8   9   10   11   12   13   14   15   16   17   18   19   20   21   22   23

Right Nucleus:   0   1   2   3   4   5   6   7   8   9   10   11   12   13   14   15   16   17   18   19   20   21   22   23

1 Element of order 1:   0

1 Element of order 2:   14

2 Elements of order 3:   17   21

2 Elements of order 4:   13   15

2 Elements of order 6:   18   20

12 Elements of order 8:   1   2   3   4   5   6   7   8   9   10   11   12

4 Elements of order 12:   16   19   22   23

Commutator Subloop:   0   17   21

Associator Subloop:   0

4 Conjugacy Classes of size 1:

4 Conjugacy Classes of size 2:

4 Conjugacy Classes of size 3:

Automorphic Inverse Property:   FAILS.   (1-1)(6-1) neq (1*6)-1

Al Property:   HOLDS (i.e. every left inner mapping La,b is an automorphism)

Ar Property:   HOLDS (i.e. every right inner mapping Ra,b is an automorphism)

Right (Left, Full) Mult Group Orders:   24 (24, 144)


/ revised November, 2001