Moufang Loop 16.1.2.31 of order 16


0123456789101112131415
1032547698111013121514
2310675410119815141213
3201764511108914151312
4576102312131415981110
5467013213121514891011
6745321014151312101198
7654230115141213111089
8911101312151410234567
9810111213141501325476
1011891514121332107645
1110981415131223016754
1213141589111054671032
1312151498101145760123
1415131210118976542310
1514121311109867453201

Centre:   0   1

Centrum:   0   1

Nucleus:   0   1

Left Nucleus:   0   1

Middle Nucleus:   0   1

Right Nucleus:   0   1


Comm(L):   This graph has as its 7 vertices the nontrivial cosets of the centre. Edges represent non-commuting cosets. Here we print (in reverse video) the complementary graph, in which edges represent commuting cosets.


1 Element of order 1:   0

1 Element of order 2:   1

14 Elements of order 4:   2   3   4   5   6   7   8   9   10   11   12   13   14   15

Commutator Subloop:   0   1

Associator Subloop:   0   1

2 Conjugacy Classes of size 1:

7 Conjugacy Classes of size 2:

Automorphic Inverse Property:   FAILS.   (2-1)(5-1) neq (2*5)-1

Al Property:   HOLDS (i.e. every left inner mapping La,b is an automorphism)

Ar Property:   HOLDS (i.e. every right inner mapping Ra,b is an automorphism)

Right (Left, Full) Mult Group Orders:   128 (128, 1024)


/ revised October, 2001