0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 |
1 | 16 | 18 | 20 | 14 | 19 | 0 | 13 | 15 | 17 | 23 | 22 | 21 | 2 | 6 | 3 | 4 | 5 | 9 | 8 | 7 | 10 | 12 | 11 |
2 | 15 | 22 | 21 | 17 | 23 | 13 | 14 | 0 | 16 | 20 | 19 | 18 | 6 | 5 | 1 | 3 | 4 | 12 | 11 | 10 | 9 | 8 | 7 |
3 | 17 | 21 | 23 | 13 | 22 | 15 | 0 | 16 | 14 | 19 | 18 | 20 | 1 | 2 | 4 | 5 | 6 | 10 | 12 | 11 | 7 | 9 | 8 |
4 | 14 | 20 | 19 | 0 | 18 | 16 | 15 | 17 | 13 | 22 | 21 | 23 | 3 | 1 | 5 | 6 | 2 | 7 | 9 | 8 | 11 | 10 | 12 |
5 | 13 | 23 | 22 | 15 | 21 | 17 | 16 | 14 | 0 | 18 | 20 | 19 | 4 | 3 | 6 | 2 | 1 | 11 | 10 | 12 | 8 | 7 | 9 |
6 | 0 | 19 | 18 | 16 | 20 | 14 | 17 | 13 | 15 | 21 | 23 | 22 | 5 | 4 | 2 | 1 | 3 | 8 | 7 | 9 | 12 | 11 | 10 |
7 | 19 | 14 | 0 | 18 | 16 | 20 | 21 | 23 | 22 | 15 | 17 | 13 | 10 | 9 | 11 | 8 | 12 | 6 | 4 | 1 | 2 | 5 | 3 |
8 | 18 | 0 | 16 | 20 | 14 | 19 | 23 | 22 | 21 | 17 | 13 | 15 | 11 | 7 | 12 | 9 | 10 | 1 | 6 | 4 | 3 | 2 | 5 |
9 | 20 | 16 | 14 | 19 | 0 | 18 | 22 | 21 | 23 | 13 | 15 | 17 | 12 | 8 | 10 | 7 | 11 | 4 | 1 | 6 | 5 | 3 | 2 |
10 | 23 | 17 | 13 | 22 | 15 | 21 | 18 | 20 | 19 | 0 | 16 | 14 | 9 | 12 | 7 | 11 | 8 | 5 | 3 | 2 | 6 | 4 | 1 |
11 | 22 | 13 | 15 | 21 | 17 | 23 | 20 | 19 | 18 | 16 | 14 | 0 | 7 | 10 | 8 | 12 | 9 | 2 | 5 | 3 | 1 | 6 | 4 |
12 | 21 | 15 | 17 | 23 | 13 | 22 | 19 | 18 | 20 | 14 | 0 | 16 | 8 | 11 | 9 | 10 | 7 | 3 | 2 | 5 | 4 | 1 | 6 |
13 | 2 | 6 | 1 | 3 | 4 | 5 | 10 | 11 | 12 | 9 | 7 | 8 | 14 | 17 | 0 | 15 | 16 | 22 | 23 | 21 | 18 | 19 | 20 |
14 | 6 | 5 | 2 | 1 | 3 | 4 | 9 | 7 | 8 | 12 | 10 | 11 | 17 | 16 | 13 | 0 | 15 | 19 | 20 | 18 | 22 | 23 | 21 |
15 | 3 | 1 | 4 | 5 | 6 | 2 | 11 | 12 | 10 | 7 | 8 | 9 | 0 | 13 | 16 | 17 | 14 | 21 | 22 | 23 | 20 | 18 | 19 |
16 | 4 | 3 | 5 | 6 | 2 | 1 | 8 | 9 | 7 | 11 | 12 | 10 | 15 | 0 | 17 | 14 | 13 | 20 | 18 | 19 | 23 | 21 | 22 |
17 | 5 | 4 | 6 | 2 | 1 | 3 | 12 | 10 | 11 | 8 | 9 | 7 | 16 | 15 | 14 | 13 | 0 | 23 | 21 | 22 | 19 | 20 | 18 |
18 | 9 | 12 | 10 | 7 | 11 | 8 | 6 | 1 | 4 | 5 | 2 | 3 | 22 | 19 | 21 | 20 | 23 | 16 | 0 | 14 | 17 | 15 | 13 |
19 | 8 | 11 | 12 | 9 | 10 | 7 | 4 | 6 | 1 | 3 | 5 | 2 | 23 | 20 | 22 | 18 | 21 | 0 | 14 | 16 | 15 | 13 | 17 |
20 | 7 | 10 | 11 | 8 | 12 | 9 | 1 | 4 | 6 | 2 | 3 | 5 | 21 | 18 | 23 | 19 | 22 | 14 | 16 | 0 | 13 | 17 | 15 |
21 | 10 | 9 | 7 | 11 | 8 | 12 | 2 | 3 | 5 | 6 | 1 | 4 | 18 | 22 | 20 | 23 | 19 | 17 | 15 | 13 | 14 | 16 | 0 |
22 | 12 | 8 | 9 | 10 | 7 | 11 | 5 | 2 | 3 | 4 | 6 | 1 | 19 | 23 | 18 | 21 | 20 | 15 | 13 | 17 | 16 | 0 | 14 |
23 | 11 | 7 | 8 | 12 | 9 | 10 | 3 | 5 | 2 | 1 | 4 | 6 | 20 | 21 | 19 | 22 | 18 | 13 | 17 | 15 | 0 | 14 | 16 |
Centre: 0 14 16 21 22 23
Centrum: 0 13 14 15 16 17 18 19 20 21 22 23
Nucleus: 0 14 16 21 22 23
Left Nucleus: 0 13 14 15 16 17 18 19 20 21 22 23
Middle Nucleus: 0 14 16 21 22 23
Right Nucleus: 0 14 16 21 22 23
1 Element of order 1: 0
5 Elements of order 2: 4 10 17 20 22
2 Elements of order 3: 14 16
2 Elements of order 4: 2 8
10 Elements of order 6: 1 6 11 12 13 15 18 19 21 23
4 Elements of order 12: 3 5 7 9
Commutator Subloop: 0 22
Associator Subloop: 0 22
6 Conjugacy Classes of size 1:
9 Conjugacy Classes of size 2:
Automorphic Inverse Property: FAILS. (1-1)(3-1) neq (1*3)-1
Al Property: HOLDS (i.e. every left inner mapping La,b is an automorphism)
Ar Property: HOLDS (i.e. every right inner mapping Ra,b is an automorphism)
Right (Left, Full) Mult Group Orders: 48 (96, 192)