Group 24.15.4.0 of order 24


01234567891011121314151617181920212223
12503471168910131712141516192021222318
25410311107689171613121415202122231819
30145286910117141215161713231819202122
43052198101176151416171312222318192021
54321010911768161517131214212223181920
67118910013452181923222120121317161514
71110689120345192018232221131716151412
86791011304521231822212019141213171615
98610117435210222321201918151412131716
10981176542103212220191823161514121317
11109768251034202119182322171615141213
12141513171618231920212203125468910117
13121417161519182021222310254376891011
14151612131723221819202134012589101176
15161714121322212318192045301291011768
16171315141221202223181952430110117689
17131216151420192122231821543011768910
18232219202112141317161568711109034521
19182320212213121716151476111098103452
20191821222317131615141211710986210345
21201922231816171514121310119867521034
22212023181915161412131791086711452103
23222118192014151213171689671110345210

Centre:   0   5   6   10

Centrum:   0   5   6   10

Nucleus:   0   1   2   3   4   5   6   7   8   9   10   11   12   13   14   15   16   17   18   19   20   21   22   23

Left Nucleus:   0   1   2   3   4   5   6   7   8   9   10   11   12   13   14   15   16   17   18   19   20   21   22   23

Middle Nucleus:   0   1   2   3   4   5   6   7   8   9   10   11   12   13   14   15   16   17   18   19   20   21   22   23

Right Nucleus:   0   1   2   3   4   5   6   7   8   9   10   11   12   13   14   15   16   17   18   19   20   21   22   23

1 Element of order 1:   0

15 Elements of order 2:   5   6   10   12   13   14   15   16   17   18   19   20   21   22   23

2 Elements of order 3:   2   4

6 Elements of order 6:   1   3   7   8   9   11

Commutator Subloop:   0   2   4

Associator Subloop:   0

4 Conjugacy Classes of size 1:

4 Conjugacy Classes of size 2:

4 Conjugacy Classes of size 3:

Automorphic Inverse Property:   FAILS.   (1-1)(13-1) neq (1*13)-1

Al Property:   HOLDS (i.e. every left inner mapping La,b is an automorphism)

Ar Property:   HOLDS (i.e. every right inner mapping Ra,b is an automorphism)

Right (Left, Full) Mult Group Orders:   24 (24, 144)


/ revised November, 2001