Group 24.7.4.0 of order 24


01234567891011121314151617181920212223
12305746911810131512142019162223172118
23017654111098151413122322202118191716
30126475108119141215131821231716221920
45768910110132162018231712211319141522
57649118101203202316181913171522121421
64571081193021181623202114221217151319
76451110982310231820162215191421131217
89111001324567171921221216142013182315
91110812035746192217211320122315161814
10891130216475211722191418151612232013
11108923107654222119171523131814201612
12131514171921221620182323101179610548
13151412192217212023161830211061148759
14121315211722191816232012039587114610
15141213222119172318201601328410596711
16202318121314151719212276542111103980
17192221162018231213141511109872536104
18162023141215132117221957461901128103
19222117202316181315121410811963704215
20231816131512141922172164753102801191
21171922181623201412151391181051427036
22211719231820161514131289101140615327
23181620151413122221191745670839110112

Centre:   0   1   2   3

Centrum:   0   1   2   3

Nucleus:   0   1   2   3   4   5   6   7   8   9   10   11   12   13   14   15   16   17   18   19   20   21   22   23

Left Nucleus:   0   1   2   3   4   5   6   7   8   9   10   11   12   13   14   15   16   17   18   19   20   21   22   23

Middle Nucleus:   0   1   2   3   4   5   6   7   8   9   10   11   12   13   14   15   16   17   18   19   20   21   22   23

Right Nucleus:   0   1   2   3   4   5   6   7   8   9   10   11   12   13   14   15   16   17   18   19   20   21   22   23

1 Element of order 1:   0

7 Elements of order 2:   2   13   14   18   19   20   21

2 Elements of order 3:   4   8

8 Elements of order 4:   1   3   12   15   16   17   22   23

2 Elements of order 6:   7   11

4 Elements of order 12:   5   6   9   10

Commutator Subloop:   0   4   8

Associator Subloop:   0

4 Conjugacy Classes of size 1:

4 Conjugacy Classes of size 2:

4 Conjugacy Classes of size 3:

Automorphic Inverse Property:   FAILS.   (4-1)(13-1) neq (4*13)-1

Al Property:   HOLDS (i.e. every left inner mapping La,b is an automorphism)

Ar Property:   HOLDS (i.e. every right inner mapping Ra,b is an automorphism)

Right (Left, Full) Mult Group Orders:   24 (24, 144)


/ revised November, 2001