0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 |
1 | 2 | 3 | 0 | 5 | 7 | 4 | 6 | 9 | 11 | 8 | 10 | 13 | 15 | 12 | 14 | 20 | 19 | 16 | 22 | 23 | 17 | 21 | 18 |
2 | 3 | 0 | 1 | 7 | 6 | 5 | 4 | 11 | 10 | 9 | 8 | 15 | 14 | 13 | 12 | 23 | 22 | 20 | 21 | 18 | 19 | 17 | 16 |
3 | 0 | 1 | 2 | 6 | 4 | 7 | 5 | 10 | 8 | 11 | 9 | 14 | 12 | 15 | 13 | 18 | 21 | 23 | 17 | 16 | 22 | 19 | 20 |
4 | 5 | 7 | 6 | 8 | 9 | 10 | 11 | 0 | 1 | 3 | 2 | 16 | 20 | 18 | 23 | 17 | 12 | 21 | 13 | 19 | 14 | 15 | 22 |
5 | 7 | 6 | 4 | 9 | 11 | 8 | 10 | 1 | 2 | 0 | 3 | 20 | 23 | 16 | 18 | 19 | 13 | 17 | 15 | 22 | 12 | 14 | 21 |
6 | 4 | 5 | 7 | 10 | 8 | 11 | 9 | 3 | 0 | 2 | 1 | 18 | 16 | 23 | 20 | 21 | 14 | 22 | 12 | 17 | 15 | 13 | 19 |
7 | 6 | 4 | 5 | 11 | 10 | 9 | 8 | 2 | 3 | 1 | 0 | 23 | 18 | 20 | 16 | 22 | 15 | 19 | 14 | 21 | 13 | 12 | 17 |
8 | 9 | 11 | 10 | 0 | 1 | 3 | 2 | 4 | 5 | 6 | 7 | 17 | 19 | 21 | 22 | 12 | 16 | 14 | 20 | 13 | 18 | 23 | 15 |
9 | 11 | 10 | 8 | 1 | 2 | 0 | 3 | 5 | 7 | 4 | 6 | 19 | 22 | 17 | 21 | 13 | 20 | 12 | 23 | 15 | 16 | 18 | 14 |
10 | 8 | 9 | 11 | 3 | 0 | 2 | 1 | 6 | 4 | 7 | 5 | 21 | 17 | 22 | 19 | 14 | 18 | 15 | 16 | 12 | 23 | 20 | 13 |
11 | 10 | 8 | 9 | 2 | 3 | 1 | 0 | 7 | 6 | 5 | 4 | 22 | 21 | 19 | 17 | 15 | 23 | 13 | 18 | 14 | 20 | 16 | 12 |
12 | 13 | 15 | 14 | 17 | 19 | 21 | 22 | 16 | 20 | 18 | 23 | 2 | 3 | 1 | 0 | 11 | 7 | 9 | 6 | 10 | 5 | 4 | 8 |
13 | 15 | 14 | 12 | 19 | 22 | 17 | 21 | 20 | 23 | 16 | 18 | 3 | 0 | 2 | 1 | 10 | 6 | 11 | 4 | 8 | 7 | 5 | 9 |
14 | 12 | 13 | 15 | 21 | 17 | 22 | 19 | 18 | 16 | 23 | 20 | 1 | 2 | 0 | 3 | 9 | 5 | 8 | 7 | 11 | 4 | 6 | 10 |
15 | 14 | 12 | 13 | 22 | 21 | 19 | 17 | 23 | 18 | 20 | 16 | 0 | 1 | 3 | 2 | 8 | 4 | 10 | 5 | 9 | 6 | 7 | 11 |
16 | 20 | 23 | 18 | 12 | 13 | 14 | 15 | 17 | 19 | 21 | 22 | 7 | 6 | 5 | 4 | 2 | 11 | 1 | 10 | 3 | 9 | 8 | 0 |
17 | 19 | 22 | 21 | 16 | 20 | 18 | 23 | 12 | 13 | 14 | 15 | 11 | 10 | 9 | 8 | 7 | 2 | 5 | 3 | 6 | 1 | 0 | 4 |
18 | 16 | 20 | 23 | 14 | 12 | 15 | 13 | 21 | 17 | 22 | 19 | 5 | 7 | 4 | 6 | 1 | 9 | 0 | 11 | 2 | 8 | 10 | 3 |
19 | 22 | 21 | 17 | 20 | 23 | 16 | 18 | 13 | 15 | 12 | 14 | 10 | 8 | 11 | 9 | 6 | 3 | 7 | 0 | 4 | 2 | 1 | 5 |
20 | 23 | 18 | 16 | 13 | 15 | 12 | 14 | 19 | 22 | 17 | 21 | 6 | 4 | 7 | 5 | 3 | 10 | 2 | 8 | 0 | 11 | 9 | 1 |
21 | 17 | 19 | 22 | 18 | 16 | 23 | 20 | 14 | 12 | 15 | 13 | 9 | 11 | 8 | 10 | 5 | 1 | 4 | 2 | 7 | 0 | 3 | 6 |
22 | 21 | 17 | 19 | 23 | 18 | 20 | 16 | 15 | 14 | 13 | 12 | 8 | 9 | 10 | 11 | 4 | 0 | 6 | 1 | 5 | 3 | 2 | 7 |
23 | 18 | 16 | 20 | 15 | 14 | 13 | 12 | 22 | 21 | 19 | 17 | 4 | 5 | 6 | 7 | 0 | 8 | 3 | 9 | 1 | 10 | 11 | 2 |
Centre: 0 1 2 3
Centrum: 0 1 2 3
Nucleus: 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23
Left Nucleus: 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23
Middle Nucleus: 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23
Right Nucleus: 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23
1 Element of order 1: 0
7 Elements of order 2: 2 13 14 18 19 20 21
2 Elements of order 3: 4 8
8 Elements of order 4: 1 3 12 15 16 17 22 23
2 Elements of order 6: 7 11
4 Elements of order 12: 5 6 9 10
Commutator Subloop: 0 4 8
Associator Subloop: 0
4 Conjugacy Classes of size 1:
4 Conjugacy Classes of size 2:
4 Conjugacy Classes of size 3:
Automorphic Inverse Property: FAILS. (4-1)(13-1) neq (4*13)-1
Al Property: HOLDS (i.e. every left inner mapping La,b is an automorphism)
Ar Property: HOLDS (i.e. every right inner mapping Ra,b is an automorphism)
Right (Left, Full) Mult Group Orders: 24 (24, 144)