Moufang Loop 24.13.2.6 of order 24


01234567891011121314151617181920212223
12305910411786131512141922162123182017
23019785641110151413122120191817162322
30127411910568141215131823211622191720
46981017351120162223212012141315171819
51071182409631222116231318201719141512
69841112100357192017182313121514221621
71151060924813231621221419172018131215
84693100112175181720192214151213232116
98461135171002212322161715131412201918
10711526381094201819171516232221121413
11510708163249171918201221222316151314
12141513172318221920211603121146891075
13121415191617212018232210235694871110
14151312182120161719222332017849651011
15131214202219231817162121301098641157
16182119121422132315172047590101311268
17232022211914181316151211861090752431
18211916221715201223131481011635027149
19161821232012171522141361110817205394
20221723161813191421121510681142570913
21191618151323142212201795742113110086
22172320131221151614191854978111103602
23202217141516122113181979456310111820

Centre:   0   2

Centrum:   0   2

Nucleus:   0   2

Left Nucleus:   0   2

Middle Nucleus:   0   2

Right Nucleus:   0   2

1 Element of order 1:   0

13 Elements of order 2:   2   12   13   14   15   16   17   18   19   20   21   22   23

2 Elements of order 3:   9   10

6 Elements of order 4:   1   3   5   6   7   8

2 Elements of order 6:   4   11

Commutator Subloop:   0   2   4   9   10   11

Associator Subloop:   0   9   10

2 Conjugacy Classes of size 1:

2 Conjugacy Classes of size 2:

3 Conjugacy Classes of size 6:

Automorphic Inverse Property:   FAILS.   (1-1)(5-1) neq (1*5)-1

Al Property:   FAILS. The left inner mapping L1,4 = (12,21,20)(13,23,18)(14,22,19)(15,16,17) is not an automorphism.   L1,4(1*12) neq L1,4(1)*L1,4(12)

Ar Property:   FAILS. The right inner mapping R1,4 = (12,20,21)(13,18,23)(14,19,22)(15,17,16) is not an automorphism.   R1,4(1*12) neq R1,4(1)*R1,4(12)

Right (Left, Full) Mult Group Orders:   1296 (1296, 5184)


/ revised November, 2001