0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 |
1 | 2 | 3 | 0 | 5 | 9 | 10 | 4 | 11 | 7 | 8 | 6 | 13 | 15 | 12 | 14 | 19 | 22 | 16 | 21 | 23 | 18 | 20 | 17 |
2 | 3 | 0 | 1 | 9 | 7 | 8 | 5 | 6 | 4 | 11 | 10 | 15 | 14 | 13 | 12 | 21 | 20 | 19 | 18 | 17 | 16 | 23 | 22 |
3 | 0 | 1 | 2 | 7 | 4 | 11 | 9 | 10 | 5 | 6 | 8 | 14 | 12 | 15 | 13 | 18 | 23 | 21 | 16 | 22 | 19 | 17 | 20 |
4 | 6 | 9 | 8 | 10 | 1 | 7 | 3 | 5 | 11 | 2 | 0 | 16 | 22 | 23 | 21 | 20 | 12 | 14 | 13 | 15 | 17 | 18 | 19 |
5 | 10 | 7 | 11 | 8 | 2 | 4 | 0 | 9 | 6 | 3 | 1 | 22 | 21 | 16 | 23 | 13 | 18 | 20 | 17 | 19 | 14 | 15 | 12 |
6 | 9 | 8 | 4 | 1 | 11 | 2 | 10 | 0 | 3 | 5 | 7 | 19 | 20 | 17 | 18 | 23 | 13 | 12 | 15 | 14 | 22 | 16 | 21 |
7 | 11 | 5 | 10 | 6 | 0 | 9 | 2 | 4 | 8 | 1 | 3 | 23 | 16 | 21 | 22 | 14 | 19 | 17 | 20 | 18 | 13 | 12 | 15 |
8 | 4 | 6 | 9 | 3 | 10 | 0 | 11 | 2 | 1 | 7 | 5 | 18 | 17 | 20 | 19 | 22 | 14 | 15 | 12 | 13 | 23 | 21 | 16 |
9 | 8 | 4 | 6 | 11 | 3 | 5 | 1 | 7 | 10 | 0 | 2 | 21 | 23 | 22 | 16 | 17 | 15 | 13 | 14 | 12 | 20 | 19 | 18 |
10 | 7 | 11 | 5 | 2 | 6 | 3 | 8 | 1 | 0 | 9 | 4 | 20 | 18 | 19 | 17 | 15 | 16 | 23 | 22 | 21 | 12 | 14 | 13 |
11 | 5 | 10 | 7 | 0 | 8 | 1 | 6 | 3 | 2 | 4 | 9 | 17 | 19 | 18 | 20 | 12 | 21 | 22 | 23 | 16 | 15 | 13 | 14 |
12 | 14 | 15 | 13 | 17 | 23 | 18 | 22 | 19 | 20 | 21 | 16 | 0 | 3 | 1 | 2 | 11 | 4 | 6 | 8 | 9 | 10 | 7 | 5 |
13 | 12 | 14 | 15 | 19 | 16 | 17 | 21 | 20 | 18 | 23 | 22 | 1 | 0 | 2 | 3 | 5 | 6 | 9 | 4 | 8 | 7 | 11 | 10 |
14 | 15 | 13 | 12 | 18 | 21 | 20 | 16 | 17 | 19 | 22 | 23 | 3 | 2 | 0 | 1 | 7 | 8 | 4 | 9 | 6 | 5 | 10 | 11 |
15 | 13 | 12 | 14 | 20 | 22 | 19 | 23 | 18 | 17 | 16 | 21 | 2 | 1 | 3 | 0 | 10 | 9 | 8 | 6 | 4 | 11 | 5 | 7 |
16 | 18 | 21 | 19 | 12 | 14 | 22 | 13 | 23 | 15 | 17 | 20 | 4 | 7 | 5 | 9 | 0 | 10 | 1 | 3 | 11 | 2 | 6 | 8 |
17 | 23 | 20 | 22 | 21 | 19 | 14 | 18 | 13 | 16 | 15 | 12 | 11 | 8 | 6 | 10 | 9 | 0 | 7 | 5 | 2 | 4 | 3 | 1 |
18 | 21 | 19 | 16 | 22 | 17 | 15 | 20 | 12 | 23 | 13 | 14 | 8 | 10 | 11 | 6 | 3 | 5 | 0 | 2 | 7 | 1 | 4 | 9 |
19 | 16 | 18 | 21 | 23 | 20 | 12 | 17 | 15 | 22 | 14 | 13 | 6 | 11 | 10 | 8 | 1 | 7 | 2 | 0 | 5 | 3 | 9 | 4 |
20 | 22 | 17 | 23 | 16 | 18 | 13 | 19 | 14 | 21 | 12 | 15 | 10 | 6 | 8 | 11 | 4 | 2 | 5 | 7 | 0 | 9 | 1 | 3 |
21 | 19 | 16 | 18 | 15 | 13 | 23 | 14 | 22 | 12 | 20 | 17 | 9 | 5 | 7 | 4 | 2 | 11 | 3 | 1 | 10 | 0 | 8 | 6 |
22 | 17 | 23 | 20 | 13 | 12 | 21 | 15 | 16 | 14 | 19 | 18 | 5 | 4 | 9 | 7 | 8 | 1 | 11 | 10 | 3 | 6 | 0 | 2 |
23 | 20 | 22 | 17 | 14 | 15 | 16 | 12 | 21 | 13 | 18 | 19 | 7 | 9 | 4 | 5 | 6 | 3 | 10 | 11 | 1 | 8 | 2 | 0 |
Centre: 0 2
Centrum: 0 2
Nucleus: 0 2
Left Nucleus: 0 2
Middle Nucleus: 0 2
Right Nucleus: 0 2
1 Element of order 1: 0
13 Elements of order 2: 2 12 13 14 15 16 17 18 19 20 21 22 23
2 Elements of order 3: 9 10
6 Elements of order 4: 1 3 5 6 7 8
2 Elements of order 6: 4 11
Commutator Subloop: 0 2 4 9 10 11
Associator Subloop: 0 9 10
2 Conjugacy Classes of size 1:
2 Conjugacy Classes of size 2:
3 Conjugacy Classes of size 6:
Automorphic Inverse Property: FAILS. (1-1)(5-1) neq (1*5)-1
Al Property: FAILS. The left inner mapping L1,4 = (12,21,20)(13,23,18)(14,22,19)(15,16,17) is not an automorphism. L1,4(1*12) neq L1,4(1)*L1,4(12)
Ar Property: FAILS. The right inner mapping R1,4 = (12,20,21)(13,18,23)(14,19,22)(15,17,16) is not an automorphism. R1,4(1*12) neq R1,4(1)*R1,4(12)
Right (Left, Full) Mult Group Orders: 1296 (1296, 5184)