Group 18.9.1.1 of order 18


01234567891011121314151617
10171310151211141647638592
21401713101512161159741683
31614017131015111268952714
41116140171310121571863925
51211161401713151092174836
61512111614017101383295147
71015121116140131714386259
81713101512111601436529471
91310151211161417025417368
10798123465110141213161715
11456798132010131412171516
12567981243141317161501011
13981234576121416151711010
14234567918131215171610110
15679812354161701110141312
16345679821171510011131214
17812345697151611100121413

Centre:   0

Centrum:   0

Nucleus:   0   1   2   3   4   5   6   7   8   9   10   11   12   13   14   15   16   17

Left Nucleus:   0   1   2   3   4   5   6   7   8   9   10   11   12   13   14   15   16   17

Middle Nucleus:   0   1   2   3   4   5   6   7   8   9   10   11   12   13   14   15   16   17

Right Nucleus:   0   1   2   3   4   5   6   7   8   9   10   11   12   13   14   15   16   17

1 Element of order 1:   0

9 Elements of order 2:   1   2   3   4   5   6   7   8   9

2 Elements of order 3:   10   11

6 Elements of order 9:   12   13   14   15   16   17

Commutator Subloop:   0   10   11   12   13   14   15   16   17

Associator Subloop:   0

1 Conjugacy Class of size 1:

4 Conjugacy Classes of size 2:

1 Conjugacy Class of size 9:

Automorphic Inverse Property:   FAILS.   (1-1)(3-1) neq (1*3)-1

Al Property:   HOLDS (i.e. every left inner mapping La,b is an automorphism)

Ar Property:   HOLDS (i.e. every right inner mapping Ra,b is an automorphism)

Right (Left, Full) Mult Group Orders:   18 (18, 324)


/ revised November, 2001