Right Bol Loop 24.9.7.0 of order 24


01234567891011121314151617181920212223
12503476981110131712141516192021222318
25410311810679171613121415202122231819
30145281161097141215161713231819202122
43052191071186151416171312222318192021
54321010911768161517131214212223181920
67118910013452181923222120121317161514
71110689104325192018232221131716151412
86791011320541231822212019141213171615
98610117451230222321201918151412131716
10981176542103212220191823161514121317
11109768235014202119182322171615141213
12131714151618232122192025103411109867
13171612141519222023182154210310986711
14121315161723182221201912034571110986
15141216171322192320211801345267111098
16151417131221201819222330452186711109
17161513121420211918232243521098671110
18192023222112141615131711107689254301
19202118232213151714121610911768543012
20212219182317161312141598101176430125
21222320191816171213151486910117301254
22231821201915131417161267891011012543
23181922212014121516171371168910125430

Centre:   0

Centrum:   0   5   6   14   17   20   23

Nucleus:   0

Left Nucleus:   0   5   6   10   14   17   20   23

Middle Nucleus:   0   2   4

Right Nucleus:   0   2   4

1 Element of order 1:   0

9 Elements of order 2:   5   6   7   8   10   14   17   20   23

2 Elements of order 3:   2   4

12 Elements of order 6:   1   3   9   11   12   13   15   16   18   19   21   22

Commutator Subloop:   0   2   4

Associator Subloop:   0   2   4

1 Conjugacy Class of size 1:

1 Conjugacy Class of size 2:

7 Conjugacy Classes of size 3:

Automorphic Inverse Property:   FAILS.   (1-1)(7-1) neq (1*7)-1

Al Property:   FAILS. The left inner mapping L1,1 = (6,9,11)(7,10,8) is not an automorphism.   L1,1(1*6) neq L1,1(1)*L1,1(6)

Ar Property:   HOLDS (i.e. every right inner mapping Ra,b is an automorphism)

Right (Left, Full) Mult Group Orders:   48 (17496, 104976)


/ revised November, 2001